Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\times 2\sqrt{2}-3\sqrt{3}+5\sqrt{32}-\left(3\sqrt{27}-6\sqrt{24}\right)
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
4\sqrt{2}-3\sqrt{3}+5\sqrt{32}-\left(3\sqrt{27}-6\sqrt{24}\right)
Whakareatia te 2 ki te 2, ka 4.
4\sqrt{2}-3\sqrt{3}+5\times 4\sqrt{2}-\left(3\sqrt{27}-6\sqrt{24}\right)
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
4\sqrt{2}-3\sqrt{3}+20\sqrt{2}-\left(3\sqrt{27}-6\sqrt{24}\right)
Whakareatia te 5 ki te 4, ka 20.
24\sqrt{2}-3\sqrt{3}-\left(3\sqrt{27}-6\sqrt{24}\right)
Pahekotia te 4\sqrt{2} me 20\sqrt{2}, ka 24\sqrt{2}.
24\sqrt{2}-3\sqrt{3}-\left(3\times 3\sqrt{3}-6\sqrt{24}\right)
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
24\sqrt{2}-3\sqrt{3}-\left(9\sqrt{3}-6\sqrt{24}\right)
Whakareatia te 3 ki te 3, ka 9.
24\sqrt{2}-3\sqrt{3}-\left(9\sqrt{3}-6\times 2\sqrt{6}\right)
Tauwehea te 24=2^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 6} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{6}. Tuhia te pūtakerua o te 2^{2}.
24\sqrt{2}-3\sqrt{3}-\left(9\sqrt{3}-12\sqrt{6}\right)
Whakareatia te -6 ki te 2, ka -12.
24\sqrt{2}-3\sqrt{3}-9\sqrt{3}-\left(-12\sqrt{6}\right)
Hei kimi i te tauaro o 9\sqrt{3}-12\sqrt{6}, kimihia te tauaro o ia taurangi.
24\sqrt{2}-12\sqrt{3}-\left(-12\sqrt{6}\right)
Pahekotia te -3\sqrt{3} me -9\sqrt{3}, ka -12\sqrt{3}.
24\sqrt{2}-12\sqrt{3}+12\sqrt{6}
Ko te tauaro o -12\sqrt{6} ko 12\sqrt{6}.