Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\left(\sqrt{3}\right)^{2}-4\sqrt{3}+1-\left(\sqrt{3}+2\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2\sqrt{3}-1\right)^{2}.
4\times 3-4\sqrt{3}+1-\left(\sqrt{3}+2\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
12-4\sqrt{3}+1-\left(\sqrt{3}+2\right)^{2}
Whakareatia te 4 ki te 3, ka 12.
13-4\sqrt{3}-\left(\sqrt{3}+2\right)^{2}
Tāpirihia te 12 ki te 1, ka 13.
13-4\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}+4\sqrt{3}+4\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{3}+2\right)^{2}.
13-4\sqrt{3}-\left(3+4\sqrt{3}+4\right)
Ko te pūrua o \sqrt{3} ko 3.
13-4\sqrt{3}-\left(7+4\sqrt{3}\right)
Tāpirihia te 3 ki te 4, ka 7.
13-4\sqrt{3}-7-4\sqrt{3}
Hei kimi i te tauaro o 7+4\sqrt{3}, kimihia te tauaro o ia taurangi.
6-4\sqrt{3}-4\sqrt{3}
Tangohia te 7 i te 13, ka 6.
6-8\sqrt{3}
Pahekotia te -4\sqrt{3} me -4\sqrt{3}, ka -8\sqrt{3}.
4\left(\sqrt{3}\right)^{2}-4\sqrt{3}+1-\left(\sqrt{3}+2\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2\sqrt{3}-1\right)^{2}.
4\times 3-4\sqrt{3}+1-\left(\sqrt{3}+2\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
12-4\sqrt{3}+1-\left(\sqrt{3}+2\right)^{2}
Whakareatia te 4 ki te 3, ka 12.
13-4\sqrt{3}-\left(\sqrt{3}+2\right)^{2}
Tāpirihia te 12 ki te 1, ka 13.
13-4\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}+4\sqrt{3}+4\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{3}+2\right)^{2}.
13-4\sqrt{3}-\left(3+4\sqrt{3}+4\right)
Ko te pūrua o \sqrt{3} ko 3.
13-4\sqrt{3}-\left(7+4\sqrt{3}\right)
Tāpirihia te 3 ki te 4, ka 7.
13-4\sqrt{3}-7-4\sqrt{3}
Hei kimi i te tauaro o 7+4\sqrt{3}, kimihia te tauaro o ia taurangi.
6-4\sqrt{3}-4\sqrt{3}
Tangohia te 7 i te 13, ka 6.
6-8\sqrt{3}
Pahekotia te -4\sqrt{3} me -4\sqrt{3}, ka -8\sqrt{3}.