Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2\sqrt{3}-\sqrt{6}\right)\times 2\sqrt{3}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\left(4\sqrt{3}-2\sqrt{6}\right)\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 2\sqrt{3}-\sqrt{6} ki te 2.
4\left(\sqrt{3}\right)^{2}-2\sqrt{6}\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 4\sqrt{3}-2\sqrt{6} ki te \sqrt{3}.
4\times 3-2\sqrt{6}\sqrt{3}
Ko te pūrua o \sqrt{3} ko 3.
12-2\sqrt{6}\sqrt{3}
Whakareatia te 4 ki te 3, ka 12.
12-2\sqrt{3}\sqrt{2}\sqrt{3}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
12-2\times 3\sqrt{2}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
12-6\sqrt{2}
Whakareatia te -2 ki te 3, ka -6.