Aromātai
-6\sqrt{2}-6\sqrt{3}\approx -18.87758622
Tauwehe
6 {(-\sqrt{2} - \sqrt{3})} = -18.87758622
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( 2 \sqrt { 3 } + 3 \sqrt { 2 } ) \times ( - \sqrt { 6 } )
Tohaina
Kua tāruatia ki te papatopenga
2\sqrt{3}\left(-\sqrt{6}\right)+3\sqrt{2}\left(-\sqrt{6}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2\sqrt{3}+3\sqrt{2} ki te -\sqrt{6}.
-2\sqrt{3}\sqrt{6}+3\sqrt{2}\left(-1\right)\sqrt{6}
Whakareatia te 2 ki te -1, ka -2.
-2\sqrt{3}\sqrt{3}\sqrt{2}+3\sqrt{2}\left(-1\right)\sqrt{6}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
-2\times 3\sqrt{2}+3\sqrt{2}\left(-1\right)\sqrt{6}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
-2\times 3\sqrt{2}+3\sqrt{2}\left(-1\right)\sqrt{2}\sqrt{3}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
-2\times 3\sqrt{2}+3\times 2\left(-1\right)\sqrt{3}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
-2\times 3\sqrt{2}+6\left(-1\right)\sqrt{3}
Whakareatia te 3 ki te 2, ka 6.
-2\times 3\sqrt{2}-6\sqrt{3}
Whakareatia te 6 ki te -1, ka -6.
-6\sqrt{2}-6\sqrt{3}
Whakareatia te -2 ki te 3, ka -6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}