Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1-\left(1+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{6}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2\sqrt{2}-1\right)^{2}.
4\times 2-4\sqrt{2}+1-\left(1+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{6}\right)
Ko te pūrua o \sqrt{2} ko 2.
8-4\sqrt{2}+1-\left(1+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{6}\right)
Whakareatia te 4 ki te 2, ka 8.
9-4\sqrt{2}-\left(1+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{6}\right)
Tāpirihia te 8 ki te 1, ka 9.
9-4\sqrt{2}-\left(\sqrt{2}-\sqrt{6}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 1+\sqrt{3} ki te \sqrt{2}-\sqrt{6}.
9-4\sqrt{2}-\left(\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{3}\sqrt{6}\right)
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
9-4\sqrt{2}-\left(\sqrt{2}-\sqrt{3}\sqrt{6}\right)
Pahekotia te -\sqrt{6} me \sqrt{6}, ka 0.
9-4\sqrt{2}-\left(\sqrt{2}-\sqrt{3}\sqrt{3}\sqrt{2}\right)
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
9-4\sqrt{2}-\left(\sqrt{2}-3\sqrt{2}\right)
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
9-4\sqrt{2}-\left(-2\sqrt{2}\right)
Pahekotia te \sqrt{2} me -3\sqrt{2}, ka -2\sqrt{2}.
9-4\sqrt{2}+2\sqrt{2}
Ko te tauaro o -2\sqrt{2} ko 2\sqrt{2}.
9-2\sqrt{2}
Pahekotia te -4\sqrt{2} me 2\sqrt{2}, ka -2\sqrt{2}.