Whakaoti mō x
x=2
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\sqrt{3}xx\sqrt{3}
Whakareatia ngā taha e rua o te whārite ki te 3.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3xx
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Whakareatia te x ki te x, ka x^{2}.
3\times 2^{2}\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Whakarohaina te \left(2\sqrt{2}\right)^{2}.
3\times 4\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
3\times 4\times 2=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Ko te pūrua o \sqrt{2} ko 2.
3\times 8=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Whakareatia te 4 ki te 2, ka 8.
24=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Whakareatia te 3 ki te 8, ka 24.
24=3\left(\left(\sqrt{3}\right)^{2}x^{2}+x^{2}\right)-2\times 3x^{2}
Whakarohaina te \left(\sqrt{3}x\right)^{2}.
24=3\left(3x^{2}+x^{2}\right)-2\times 3x^{2}
Ko te pūrua o \sqrt{3} ko 3.
24=3\times 4x^{2}-2\times 3x^{2}
Pahekotia te 3x^{2} me x^{2}, ka 4x^{2}.
24=12x^{2}-2\times 3x^{2}
Whakareatia te 3 ki te 4, ka 12.
24=12x^{2}-6x^{2}
Whakareatia te 2 ki te 3, ka 6.
24=6x^{2}
Pahekotia te 12x^{2} me -6x^{2}, ka 6x^{2}.
6x^{2}=24
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
6x^{2}-24=0
Tangohia te 24 mai i ngā taha e rua.
x^{2}-4=0
Whakawehea ngā taha e rua ki te 6.
\left(x-2\right)\left(x+2\right)=0
Whakaarohia te x^{2}-4. Tuhia anō te x^{2}-4 hei x^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+2=0.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\sqrt{3}xx\sqrt{3}
Whakareatia ngā taha e rua o te whārite ki te 3.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3xx
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Whakareatia te x ki te x, ka x^{2}.
3\times 2^{2}\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Whakarohaina te \left(2\sqrt{2}\right)^{2}.
3\times 4\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
3\times 4\times 2=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Ko te pūrua o \sqrt{2} ko 2.
3\times 8=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Whakareatia te 4 ki te 2, ka 8.
24=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Whakareatia te 3 ki te 8, ka 24.
24=3\left(\left(\sqrt{3}\right)^{2}x^{2}+x^{2}\right)-2\times 3x^{2}
Whakarohaina te \left(\sqrt{3}x\right)^{2}.
24=3\left(3x^{2}+x^{2}\right)-2\times 3x^{2}
Ko te pūrua o \sqrt{3} ko 3.
24=3\times 4x^{2}-2\times 3x^{2}
Pahekotia te 3x^{2} me x^{2}, ka 4x^{2}.
24=12x^{2}-2\times 3x^{2}
Whakareatia te 3 ki te 4, ka 12.
24=12x^{2}-6x^{2}
Whakareatia te 2 ki te 3, ka 6.
24=6x^{2}
Pahekotia te 12x^{2} me -6x^{2}, ka 6x^{2}.
6x^{2}=24
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{24}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}=4
Whakawehea te 24 ki te 6, kia riro ko 4.
x=2 x=-2
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\sqrt{3}xx\sqrt{3}
Whakareatia ngā taha e rua o te whārite ki te 3.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3xx
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Whakareatia te x ki te x, ka x^{2}.
3\times 2^{2}\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Whakarohaina te \left(2\sqrt{2}\right)^{2}.
3\times 4\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
3\times 4\times 2=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Ko te pūrua o \sqrt{2} ko 2.
3\times 8=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Whakareatia te 4 ki te 2, ka 8.
24=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Whakareatia te 3 ki te 8, ka 24.
24=3\left(\left(\sqrt{3}\right)^{2}x^{2}+x^{2}\right)-2\times 3x^{2}
Whakarohaina te \left(\sqrt{3}x\right)^{2}.
24=3\left(3x^{2}+x^{2}\right)-2\times 3x^{2}
Ko te pūrua o \sqrt{3} ko 3.
24=3\times 4x^{2}-2\times 3x^{2}
Pahekotia te 3x^{2} me x^{2}, ka 4x^{2}.
24=12x^{2}-2\times 3x^{2}
Whakareatia te 3 ki te 4, ka 12.
24=12x^{2}-6x^{2}
Whakareatia te 2 ki te 3, ka 6.
24=6x^{2}
Pahekotia te 12x^{2} me -6x^{2}, ka 6x^{2}.
6x^{2}=24
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
6x^{2}-24=0
Tangohia te 24 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-24\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 0 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-24\right)}}{2\times 6}
Pūrua 0.
x=\frac{0±\sqrt{-24\left(-24\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{0±\sqrt{576}}{2\times 6}
Whakareatia -24 ki te -24.
x=\frac{0±24}{2\times 6}
Tuhia te pūtakerua o te 576.
x=\frac{0±24}{12}
Whakareatia 2 ki te 6.
x=2
Nā, me whakaoti te whārite x=\frac{0±24}{12} ina he tāpiri te ±. Whakawehe 24 ki te 12.
x=-2
Nā, me whakaoti te whārite x=\frac{0±24}{12} ina he tango te ±. Whakawehe -24 ki te 12.
x=2 x=-2
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}