Aromātai
\frac{1295}{24}\approx 53.958333333
Tauwehe
\frac{5 \cdot 7 \cdot 37}{2 ^ {3} \cdot 3} = 53\frac{23}{24} = 53.958333333333336
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{4+1}{2}+\frac{3\times 3+2}{3}\right)\left(\frac{4\times 4+3}{4}+4\right)
Whakareatia te 2 ki te 2, ka 4.
\left(\frac{5}{2}+\frac{3\times 3+2}{3}\right)\left(\frac{4\times 4+3}{4}+4\right)
Tāpirihia te 4 ki te 1, ka 5.
\left(\frac{5}{2}+\frac{9+2}{3}\right)\left(\frac{4\times 4+3}{4}+4\right)
Whakareatia te 3 ki te 3, ka 9.
\left(\frac{5}{2}+\frac{11}{3}\right)\left(\frac{4\times 4+3}{4}+4\right)
Tāpirihia te 9 ki te 2, ka 11.
\left(\frac{15}{6}+\frac{22}{6}\right)\left(\frac{4\times 4+3}{4}+4\right)
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{5}{2} me \frac{11}{3} ki te hautau me te tautūnga 6.
\frac{15+22}{6}\left(\frac{4\times 4+3}{4}+4\right)
Tā te mea he rite te tauraro o \frac{15}{6} me \frac{22}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{37}{6}\left(\frac{4\times 4+3}{4}+4\right)
Tāpirihia te 15 ki te 22, ka 37.
\frac{37}{6}\left(\frac{16+3}{4}+4\right)
Whakareatia te 4 ki te 4, ka 16.
\frac{37}{6}\left(\frac{19}{4}+4\right)
Tāpirihia te 16 ki te 3, ka 19.
\frac{37}{6}\left(\frac{19}{4}+\frac{16}{4}\right)
Me tahuri te 4 ki te hautau \frac{16}{4}.
\frac{37}{6}\times \frac{19+16}{4}
Tā te mea he rite te tauraro o \frac{19}{4} me \frac{16}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{37}{6}\times \frac{35}{4}
Tāpirihia te 19 ki te 16, ka 35.
\frac{37\times 35}{6\times 4}
Me whakarea te \frac{37}{6} ki te \frac{35}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1295}{24}
Mahia ngā whakarea i roto i te hautanga \frac{37\times 35}{6\times 4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}