Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2+i\right)z-\left(\frac{3}{2}-i\right)z=4+3i-\left(2-5i\right)z
Whakawehea te 3-2i ki te 2, kia riro ko \frac{3}{2}-i.
\left(\frac{1}{2}+2i\right)z=4+3i-\left(2-5i\right)z
Pahekotia te \left(2+i\right)z me \left(-\frac{3}{2}+i\right)z, ka \left(\frac{1}{2}+2i\right)z.
\left(\frac{1}{2}+2i\right)z+\left(2-5i\right)z=4+3i
Me tāpiri te \left(2-5i\right)z ki ngā taha e rua.
\left(\frac{5}{2}-3i\right)z=4+3i
Pahekotia te \left(\frac{1}{2}+2i\right)z me \left(2-5i\right)z, ka \left(\frac{5}{2}-3i\right)z.
z=\frac{4+3i}{\frac{5}{2}-3i}
Whakawehea ngā taha e rua ki te \frac{5}{2}-3i.
z=\frac{\left(4+3i\right)\left(\frac{5}{2}+3i\right)}{\left(\frac{5}{2}-3i\right)\left(\frac{5}{2}+3i\right)}
Me whakarea te taurunga me te tauraro o \frac{4+3i}{\frac{5}{2}-3i} ki te haumi hiato o te tauraro, \frac{5}{2}+3i.
z=\frac{\left(4+3i\right)\left(\frac{5}{2}+3i\right)}{\left(\frac{5}{2}\right)^{2}-3^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(4+3i\right)\left(\frac{5}{2}+3i\right)}{\frac{61}{4}}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
z=\frac{4\times \frac{5}{2}+4\times \left(3i\right)+3i\times \frac{5}{2}+3\times 3i^{2}}{\frac{61}{4}}
Me whakarea ngā tau matatini 4+3i me \frac{5}{2}+3i pēnā i te whakarea huarua.
z=\frac{4\times \frac{5}{2}+4\times \left(3i\right)+3i\times \frac{5}{2}+3\times 3\left(-1\right)}{\frac{61}{4}}
Hei tōna tikanga, ko te i^{2} ko -1.
z=\frac{10+12i+\frac{15}{2}i-9}{\frac{61}{4}}
Mahia ngā whakarea i roto o 4\times \frac{5}{2}+4\times \left(3i\right)+3i\times \frac{5}{2}+3\times 3\left(-1\right).
z=\frac{10-9+\left(12+\frac{15}{2}\right)i}{\frac{61}{4}}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 10+12i+\frac{15}{2}i-9.
z=\frac{1+\frac{39}{2}i}{\frac{61}{4}}
Mahia ngā tāpiri i roto o 10-9+\left(12+\frac{15}{2}\right)i.
z=\frac{4}{61}+\frac{78}{61}i
Whakawehea te 1+\frac{39}{2}i ki te \frac{61}{4}, kia riro ko \frac{4}{61}+\frac{78}{61}i.