Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2+3i\right)x=49-11i-\left(5+4i\right)y
Tangohia te \left(5+4i\right)y mai i ngā taha e rua.
\left(2+3i\right)x=49-11i+\left(-5-4i\right)y
Whakareatia te -1 ki te 5+4i, ka -5-4i.
\left(2+3i\right)x=\left(-5-4i\right)y+\left(49-11i\right)
He hanga arowhānui tō te whārite.
\frac{\left(2+3i\right)x}{2+3i}=\frac{\left(-5-4i\right)y+\left(49-11i\right)}{2+3i}
Whakawehea ngā taha e rua ki te 2+3i.
x=\frac{\left(-5-4i\right)y+\left(49-11i\right)}{2+3i}
Mā te whakawehe ki te 2+3i ka wetekia te whakareanga ki te 2+3i.
x=\left(-\frac{22}{13}+\frac{7}{13}i\right)y+\left(5-13i\right)
Whakawehe 49-11i+\left(-5-4i\right)y ki te 2+3i.
\left(5+4i\right)y=49-11i-\left(2+3i\right)x
Tangohia te \left(2+3i\right)x mai i ngā taha e rua.
\left(5+4i\right)y=49-11i+\left(-2-3i\right)x
Whakareatia te -1 ki te 2+3i, ka -2-3i.
\left(5+4i\right)y=\left(-2-3i\right)x+\left(49-11i\right)
He hanga arowhānui tō te whārite.
\frac{\left(5+4i\right)y}{5+4i}=\frac{\left(-2-3i\right)x+\left(49-11i\right)}{5+4i}
Whakawehea ngā taha e rua ki te 5+4i.
y=\frac{\left(-2-3i\right)x+\left(49-11i\right)}{5+4i}
Mā te whakawehe ki te 5+4i ka wetekia te whakareanga ki te 5+4i.
y=\left(-\frac{22}{41}-\frac{7}{41}i\right)x+\left(\frac{201}{41}-\frac{251}{41}i\right)
Whakawehe 49-11i+\left(-2-3i\right)x ki te 5+4i.