Aromātai
40-18i
Wāhi Tūturu
40
Tohaina
Kua tāruatia ki te papatopenga
2+6i-\left(24i-38\right)
Tātaitia te pūtakerua o -36 kia tae ki 6i.
2+6i-24i-\left(-38\right)
Hei kimi i te tauaro o 24i-38, kimihia te tauaro o ia taurangi.
-\left(-38\right)+2+\left(6-24\right)i
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa.
-\left(-38\right)+2-18i
Tāpiri 6 ki te -24.
38+2-18i
Ko te tauaro o -38 ko 38.
40-18i
Tāpiri 38 ki te 2.
Re(2+6i-\left(24i-38\right))
Tātaitia te pūtakerua o -36 kia tae ki 6i.
Re(2+6i-24i-\left(-38\right))
Hei kimi i te tauaro o 24i-38, kimihia te tauaro o ia taurangi.
Re(-\left(-38\right)+2+\left(6-24\right)i)
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 2+6i-24i.
Re(-\left(-38\right)+2-18i)
Tāpiri 6 ki te -24.
Re(38+2-18i)
Ko te tauaro o -38 ko 38.
Re(40-18i)
Tāpiri 38 ki te 2.
40
Ko te wāhi tūturu o 40-18i ko 40.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}