Aromātai
0.0575625
Tauwehe
\frac{3 \cdot 307}{2 ^ {7} \cdot 5 ^ {3}} = 0.0575625
Tohaina
Kua tāruatia ki te papatopenga
\left(2+\frac{9}{10}+\frac{60000}{64000}\right)\times 0.015
Whakahekea te hautanga \frac{54000}{60000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6000.
\left(\frac{20}{10}+\frac{9}{10}+\frac{60000}{64000}\right)\times 0.015
Me tahuri te 2 ki te hautau \frac{20}{10}.
\left(\frac{20+9}{10}+\frac{60000}{64000}\right)\times 0.015
Tā te mea he rite te tauraro o \frac{20}{10} me \frac{9}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{29}{10}+\frac{60000}{64000}\right)\times 0.015
Tāpirihia te 20 ki te 9, ka 29.
\left(\frac{29}{10}+\frac{15}{16}\right)\times 0.015
Whakahekea te hautanga \frac{60000}{64000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4000.
\left(\frac{232}{80}+\frac{75}{80}\right)\times 0.015
Ko te maha noa iti rawa atu o 10 me 16 ko 80. Me tahuri \frac{29}{10} me \frac{15}{16} ki te hautau me te tautūnga 80.
\frac{232+75}{80}\times 0.015
Tā te mea he rite te tauraro o \frac{232}{80} me \frac{75}{80}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{307}{80}\times 0.015
Tāpirihia te 232 ki te 75, ka 307.
\frac{307}{80}\times \frac{3}{200}
Me tahuri ki tau ā-ira 0.015 ki te hautau \frac{15}{1000}. Whakahekea te hautanga \frac{15}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{307\times 3}{80\times 200}
Me whakarea te \frac{307}{80} ki te \frac{3}{200} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{921}{16000}
Mahia ngā whakarea i roto i te hautanga \frac{307\times 3}{80\times 200}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}