Whakaoti mō x
x = \frac{25}{16} = 1\frac{9}{16} = 1.5625
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{28}x\left(2+\frac{4}{5}\right)=\frac{5^{2}}{2^{3}\times 2^{2}}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\frac{5}{28}x\left(2+\frac{4}{5}\right)=\frac{5^{2}}{2^{5}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 2 kia riro ai te 5.
\frac{5}{28}x\left(\frac{10}{5}+\frac{4}{5}\right)=\frac{5^{2}}{2^{5}}
Me tahuri te 2 ki te hautau \frac{10}{5}.
\frac{5}{28}x\times \frac{10+4}{5}=\frac{5^{2}}{2^{5}}
Tā te mea he rite te tauraro o \frac{10}{5} me \frac{4}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{28}x\times \frac{14}{5}=\frac{5^{2}}{2^{5}}
Tāpirihia te 10 ki te 4, ka 14.
\frac{5\times 14}{28\times 5}x=\frac{5^{2}}{2^{5}}
Me whakarea te \frac{5}{28} ki te \frac{14}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{14}{28}x=\frac{5^{2}}{2^{5}}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{1}{2}x=\frac{5^{2}}{2^{5}}
Whakahekea te hautanga \frac{14}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
\frac{1}{2}x=\frac{25}{2^{5}}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{1}{2}x=\frac{25}{32}
Tātaihia te 2 mā te pū o 5, kia riro ko 32.
x=\frac{25}{32}\times 2
Me whakarea ngā taha e rua ki te 2, te tau utu o \frac{1}{2}.
x=\frac{25\times 2}{32}
Tuhia te \frac{25}{32}\times 2 hei hautanga kotahi.
x=\frac{50}{32}
Whakareatia te 25 ki te 2, ka 50.
x=\frac{25}{16}
Whakahekea te hautanga \frac{50}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}