Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{14}{7}+\frac{2}{7}\right)\left(1+\frac{7}{6}\right)\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Me tahuri te 2 ki te hautau \frac{14}{7}.
\frac{14+2}{7}\left(1+\frac{7}{6}\right)\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Tā te mea he rite te tauraro o \frac{14}{7} me \frac{2}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{16}{7}\left(1+\frac{7}{6}\right)\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Tāpirihia te 14 ki te 2, ka 16.
\frac{16}{7}\left(\frac{6}{6}+\frac{7}{6}\right)\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Me tahuri te 1 ki te hautau \frac{6}{6}.
\frac{16}{7}\times \frac{6+7}{6}\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Tā te mea he rite te tauraro o \frac{6}{6} me \frac{7}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{16}{7}\times \frac{13}{6}\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Tāpirihia te 6 ki te 7, ka 13.
\frac{16\times 13}{7\times 6}\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Me whakarea te \frac{16}{7} ki te \frac{13}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{208}{42}\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Mahia ngā whakarea i roto i te hautanga \frac{16\times 13}{7\times 6}.
\frac{104}{21}\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Whakahekea te hautanga \frac{208}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{104}{21}\left(\frac{6}{3}+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{104}{21}\times \frac{6+2}{3}\times \frac{1}{8}=\frac{3}{4}
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{2}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{104}{21}\times \frac{8}{3}\times \frac{1}{8}=\frac{3}{4}
Tāpirihia te 6 ki te 2, ka 8.
\frac{104\times 8}{21\times 3}\times \frac{1}{8}=\frac{3}{4}
Me whakarea te \frac{104}{21} ki te \frac{8}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{832}{63}\times \frac{1}{8}=\frac{3}{4}
Mahia ngā whakarea i roto i te hautanga \frac{104\times 8}{21\times 3}.
\frac{832\times 1}{63\times 8}=\frac{3}{4}
Me whakarea te \frac{832}{63} ki te \frac{1}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{832}{504}=\frac{3}{4}
Mahia ngā whakarea i roto i te hautanga \frac{832\times 1}{63\times 8}.
\frac{104}{63}=\frac{3}{4}
Whakahekea te hautanga \frac{832}{504} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{416}{252}=\frac{189}{252}
Ko te maha noa iti rawa atu o 63 me 4 ko 252. Me tahuri \frac{104}{63} me \frac{3}{4} ki te hautau me te tautūnga 252.
\text{false}
Whakatauritea te \frac{416}{252} me te \frac{189}{252}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}