Aromātai
124
Tauwehe
2^{2}\times 31
Tohaina
Kua tāruatia ki te papatopenga
2\times 6\times 343^{\frac{1}{3}}+18\times 243^{\frac{1}{5}}-\sqrt{196}
Tātaihia te 16 mā te pū o \frac{1}{4}, kia riro ko 2.
12\times 343^{\frac{1}{3}}+18\times 243^{\frac{1}{5}}-\sqrt{196}
Whakareatia te 2 ki te 6, ka 12.
12\times 7+18\times 243^{\frac{1}{5}}-\sqrt{196}
Tātaihia te 343 mā te pū o \frac{1}{3}, kia riro ko 7.
84+18\times 243^{\frac{1}{5}}-\sqrt{196}
Whakareatia te 12 ki te 7, ka 84.
84+18\times 3-\sqrt{196}
Tātaihia te 243 mā te pū o \frac{1}{5}, kia riro ko 3.
84+54-\sqrt{196}
Whakareatia te 18 ki te 3, ka 54.
138-\sqrt{196}
Tāpirihia te 84 ki te 54, ka 138.
138-14
Tātaitia te pūtakerua o 196 kia tae ki 14.
124
Tangohia te 14 i te 138, ka 124.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}