Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

16^{-\frac{3}{4}}\left(a^{-4}\right)^{-\frac{3}{4}}
Whakarohaina te \left(16a^{-4}\right)^{-\frac{3}{4}}.
16^{-\frac{3}{4}}a^{3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -4 me te -\frac{3}{4} kia riro ai te 3.
\frac{1}{8}a^{3}
Tātaihia te 16 mā te pū o -\frac{3}{4}, kia riro ko \frac{1}{8}.
-\frac{3}{4}\times \left(16a^{-4}\right)^{-\frac{3}{4}-1}\frac{\mathrm{d}}{\mathrm{d}a}(16a^{-4})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{3}{4}\times \left(16a^{-4}\right)^{-\frac{7}{4}}\left(-4\right)\times 16a^{-4-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
48a^{-5}\times \left(16a^{-4}\right)^{-\frac{7}{4}}
Whakarūnātia.