Whakaoti mō x
x = \frac{5 \sqrt{393} - 85}{2} \approx 7.060569004
x=\frac{-5\sqrt{393}-85}{2}\approx -92.060569004
Graph
Tohaina
Kua tāruatia ki te papatopenga
-425x+7500-5x^{2}=4250
Whakamahia te āhuatanga tuaritanga hei whakarea te 15-x ki te 5x+500 ka whakakotahi i ngā kupu rite.
-425x+7500-5x^{2}-4250=0
Tangohia te 4250 mai i ngā taha e rua.
-425x+3250-5x^{2}=0
Tangohia te 4250 i te 7500, ka 3250.
-5x^{2}-425x+3250=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-425\right)±\sqrt{\left(-425\right)^{2}-4\left(-5\right)\times 3250}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, -425 mō b, me 3250 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-425\right)±\sqrt{180625-4\left(-5\right)\times 3250}}{2\left(-5\right)}
Pūrua -425.
x=\frac{-\left(-425\right)±\sqrt{180625+20\times 3250}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
x=\frac{-\left(-425\right)±\sqrt{180625+65000}}{2\left(-5\right)}
Whakareatia 20 ki te 3250.
x=\frac{-\left(-425\right)±\sqrt{245625}}{2\left(-5\right)}
Tāpiri 180625 ki te 65000.
x=\frac{-\left(-425\right)±25\sqrt{393}}{2\left(-5\right)}
Tuhia te pūtakerua o te 245625.
x=\frac{425±25\sqrt{393}}{2\left(-5\right)}
Ko te tauaro o -425 ko 425.
x=\frac{425±25\sqrt{393}}{-10}
Whakareatia 2 ki te -5.
x=\frac{25\sqrt{393}+425}{-10}
Nā, me whakaoti te whārite x=\frac{425±25\sqrt{393}}{-10} ina he tāpiri te ±. Tāpiri 425 ki te 25\sqrt{393}.
x=\frac{-5\sqrt{393}-85}{2}
Whakawehe 425+25\sqrt{393} ki te -10.
x=\frac{425-25\sqrt{393}}{-10}
Nā, me whakaoti te whārite x=\frac{425±25\sqrt{393}}{-10} ina he tango te ±. Tango 25\sqrt{393} mai i 425.
x=\frac{5\sqrt{393}-85}{2}
Whakawehe 425-25\sqrt{393} ki te -10.
x=\frac{-5\sqrt{393}-85}{2} x=\frac{5\sqrt{393}-85}{2}
Kua oti te whārite te whakatau.
-425x+7500-5x^{2}=4250
Whakamahia te āhuatanga tuaritanga hei whakarea te 15-x ki te 5x+500 ka whakakotahi i ngā kupu rite.
-425x-5x^{2}=4250-7500
Tangohia te 7500 mai i ngā taha e rua.
-425x-5x^{2}=-3250
Tangohia te 7500 i te 4250, ka -3250.
-5x^{2}-425x=-3250
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-5x^{2}-425x}{-5}=-\frac{3250}{-5}
Whakawehea ngā taha e rua ki te -5.
x^{2}+\left(-\frac{425}{-5}\right)x=-\frac{3250}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x^{2}+85x=-\frac{3250}{-5}
Whakawehe -425 ki te -5.
x^{2}+85x=650
Whakawehe -3250 ki te -5.
x^{2}+85x+\left(\frac{85}{2}\right)^{2}=650+\left(\frac{85}{2}\right)^{2}
Whakawehea te 85, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{85}{2}. Nā, tāpiria te pūrua o te \frac{85}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+85x+\frac{7225}{4}=650+\frac{7225}{4}
Pūruatia \frac{85}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+85x+\frac{7225}{4}=\frac{9825}{4}
Tāpiri 650 ki te \frac{7225}{4}.
\left(x+\frac{85}{2}\right)^{2}=\frac{9825}{4}
Tauwehea x^{2}+85x+\frac{7225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{85}{2}\right)^{2}}=\sqrt{\frac{9825}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{85}{2}=\frac{5\sqrt{393}}{2} x+\frac{85}{2}=-\frac{5\sqrt{393}}{2}
Whakarūnātia.
x=\frac{5\sqrt{393}-85}{2} x=\frac{-5\sqrt{393}-85}{2}
Me tango \frac{85}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}