( 15 \quad 3 x ^ { 2 } = 27 x
Whakaoti mō x
x=\frac{3}{17}\approx 0.176470588
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
153x^{2}-27x=0
Tangohia te 27x mai i ngā taha e rua.
x\left(153x-27\right)=0
Tauwehea te x.
x=0 x=\frac{3}{17}
Hei kimi otinga whārite, me whakaoti te x=0 me te 153x-27=0.
153x^{2}-27x=0
Tangohia te 27x mai i ngā taha e rua.
x=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}}}{2\times 153}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 153 mō a, -27 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-27\right)±27}{2\times 153}
Tuhia te pūtakerua o te \left(-27\right)^{2}.
x=\frac{27±27}{2\times 153}
Ko te tauaro o -27 ko 27.
x=\frac{27±27}{306}
Whakareatia 2 ki te 153.
x=\frac{54}{306}
Nā, me whakaoti te whārite x=\frac{27±27}{306} ina he tāpiri te ±. Tāpiri 27 ki te 27.
x=\frac{3}{17}
Whakahekea te hautanga \frac{54}{306} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
x=\frac{0}{306}
Nā, me whakaoti te whārite x=\frac{27±27}{306} ina he tango te ±. Tango 27 mai i 27.
x=0
Whakawehe 0 ki te 306.
x=\frac{3}{17} x=0
Kua oti te whārite te whakatau.
153x^{2}-27x=0
Tangohia te 27x mai i ngā taha e rua.
\frac{153x^{2}-27x}{153}=\frac{0}{153}
Whakawehea ngā taha e rua ki te 153.
x^{2}+\left(-\frac{27}{153}\right)x=\frac{0}{153}
Mā te whakawehe ki te 153 ka wetekia te whakareanga ki te 153.
x^{2}-\frac{3}{17}x=\frac{0}{153}
Whakahekea te hautanga \frac{-27}{153} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
x^{2}-\frac{3}{17}x=0
Whakawehe 0 ki te 153.
x^{2}-\frac{3}{17}x+\left(-\frac{3}{34}\right)^{2}=\left(-\frac{3}{34}\right)^{2}
Whakawehea te -\frac{3}{17}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{34}. Nā, tāpiria te pūrua o te -\frac{3}{34} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{17}x+\frac{9}{1156}=\frac{9}{1156}
Pūruatia -\frac{3}{34} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{3}{34}\right)^{2}=\frac{9}{1156}
Tauwehea x^{2}-\frac{3}{17}x+\frac{9}{1156}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{34}\right)^{2}}=\sqrt{\frac{9}{1156}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{34}=\frac{3}{34} x-\frac{3}{34}=-\frac{3}{34}
Whakarūnātia.
x=\frac{3}{17} x=0
Me tāpiri \frac{3}{34} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}