Aromātai
-\frac{52}{3}\approx -17.333333333
Tauwehe
-\frac{52}{3} = -17\frac{1}{3} = -17.333333333333332
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( 13 ) ( \frac { 6 } { 7 } ) ( \frac { - 56 } { 36 } ) =
Tohaina
Kua tāruatia ki te papatopenga
\frac{13\times 6}{7}\times \frac{-56}{36}
Tuhia te 13\times \frac{6}{7} hei hautanga kotahi.
\frac{78}{7}\times \frac{-56}{36}
Whakareatia te 13 ki te 6, ka 78.
\frac{78}{7}\left(-\frac{14}{9}\right)
Whakahekea te hautanga \frac{-56}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{78\left(-14\right)}{7\times 9}
Me whakarea te \frac{78}{7} ki te -\frac{14}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-1092}{63}
Mahia ngā whakarea i roto i te hautanga \frac{78\left(-14\right)}{7\times 9}.
-\frac{52}{3}
Whakahekea te hautanga \frac{-1092}{63} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}