Whakaoti mō x
x=\frac{\sqrt{33269649630}}{300}+608\approx 1215.998991501
x=-\frac{\sqrt{33269649630}}{300}+608\approx 0.001008499
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(1215-x\right)\times 30000x+x\times 30000=36790
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\left(36450000-30000x\right)x+x\times 30000=36790
Whakamahia te āhuatanga tohatoha hei whakarea te 1215-x ki te 30000.
36450000x-30000x^{2}+x\times 30000=36790
Whakamahia te āhuatanga tohatoha hei whakarea te 36450000-30000x ki te x.
36480000x-30000x^{2}=36790
Pahekotia te 36450000x me x\times 30000, ka 36480000x.
36480000x-30000x^{2}-36790=0
Tangohia te 36790 mai i ngā taha e rua.
-30000x^{2}+36480000x-36790=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-36480000±\sqrt{36480000^{2}-4\left(-30000\right)\left(-36790\right)}}{2\left(-30000\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -30000 mō a, 36480000 mō b, me -36790 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36480000±\sqrt{1330790400000000-4\left(-30000\right)\left(-36790\right)}}{2\left(-30000\right)}
Pūrua 36480000.
x=\frac{-36480000±\sqrt{1330790400000000+120000\left(-36790\right)}}{2\left(-30000\right)}
Whakareatia -4 ki te -30000.
x=\frac{-36480000±\sqrt{1330790400000000-4414800000}}{2\left(-30000\right)}
Whakareatia 120000 ki te -36790.
x=\frac{-36480000±\sqrt{1330785985200000}}{2\left(-30000\right)}
Tāpiri 1330790400000000 ki te -4414800000.
x=\frac{-36480000±200\sqrt{33269649630}}{2\left(-30000\right)}
Tuhia te pūtakerua o te 1330785985200000.
x=\frac{-36480000±200\sqrt{33269649630}}{-60000}
Whakareatia 2 ki te -30000.
x=\frac{200\sqrt{33269649630}-36480000}{-60000}
Nā, me whakaoti te whārite x=\frac{-36480000±200\sqrt{33269649630}}{-60000} ina he tāpiri te ±. Tāpiri -36480000 ki te 200\sqrt{33269649630}.
x=-\frac{\sqrt{33269649630}}{300}+608
Whakawehe -36480000+200\sqrt{33269649630} ki te -60000.
x=\frac{-200\sqrt{33269649630}-36480000}{-60000}
Nā, me whakaoti te whārite x=\frac{-36480000±200\sqrt{33269649630}}{-60000} ina he tango te ±. Tango 200\sqrt{33269649630} mai i -36480000.
x=\frac{\sqrt{33269649630}}{300}+608
Whakawehe -36480000-200\sqrt{33269649630} ki te -60000.
x=-\frac{\sqrt{33269649630}}{300}+608 x=\frac{\sqrt{33269649630}}{300}+608
Kua oti te whārite te whakatau.
\left(1215-x\right)\times 30000x+x\times 30000=36790
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\left(36450000-30000x\right)x+x\times 30000=36790
Whakamahia te āhuatanga tohatoha hei whakarea te 1215-x ki te 30000.
36450000x-30000x^{2}+x\times 30000=36790
Whakamahia te āhuatanga tohatoha hei whakarea te 36450000-30000x ki te x.
36480000x-30000x^{2}=36790
Pahekotia te 36450000x me x\times 30000, ka 36480000x.
-30000x^{2}+36480000x=36790
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-30000x^{2}+36480000x}{-30000}=\frac{36790}{-30000}
Whakawehea ngā taha e rua ki te -30000.
x^{2}+\frac{36480000}{-30000}x=\frac{36790}{-30000}
Mā te whakawehe ki te -30000 ka wetekia te whakareanga ki te -30000.
x^{2}-1216x=\frac{36790}{-30000}
Whakawehe 36480000 ki te -30000.
x^{2}-1216x=-\frac{3679}{3000}
Whakahekea te hautanga \frac{36790}{-30000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x^{2}-1216x+\left(-608\right)^{2}=-\frac{3679}{3000}+\left(-608\right)^{2}
Whakawehea te -1216, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -608. Nā, tāpiria te pūrua o te -608 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-1216x+369664=-\frac{3679}{3000}+369664
Pūrua -608.
x^{2}-1216x+369664=\frac{1108988321}{3000}
Tāpiri -\frac{3679}{3000} ki te 369664.
\left(x-608\right)^{2}=\frac{1108988321}{3000}
Tauwehea x^{2}-1216x+369664. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-608\right)^{2}}=\sqrt{\frac{1108988321}{3000}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-608=\frac{\sqrt{33269649630}}{300} x-608=-\frac{\sqrt{33269649630}}{300}
Whakarūnātia.
x=\frac{\sqrt{33269649630}}{300}+608 x=-\frac{\sqrt{33269649630}}{300}+608
Me tāpiri 608 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}