Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(12u^{-2}y^{2}\times \frac{1}{z}\right)^{3}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
12^{3}\left(u^{-2}\right)^{3}\left(y^{2}\right)^{3}\times \left(\frac{1}{z}\right)^{3}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
1728\left(u^{-2}\right)^{3}\left(y^{2}\right)^{3}\times \left(\frac{1}{z}\right)^{3}
Hīkina te 12 ki te pū 3.
1728u^{-2\times 3}y^{2\times 3}z^{-3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
1728\times \frac{1}{u^{6}}y^{2\times 3}z^{-3}
Whakareatia -2 ki te 3.
1728\times \frac{1}{u^{6}}y^{6}z^{-3}
Whakareatia 2 ki te 3.
1728\times \frac{1}{u^{6}}y^{6}\times \frac{1}{z^{3}}
Whakareatia -1 ki te 3.
\left(12u^{-2}y^{2}\times \frac{1}{z}\right)^{3}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
12^{3}\left(u^{-2}\right)^{3}\left(y^{2}\right)^{3}\times \left(\frac{1}{z}\right)^{3}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
1728\left(u^{-2}\right)^{3}\left(y^{2}\right)^{3}\times \left(\frac{1}{z}\right)^{3}
Hīkina te 12 ki te pū 3.
1728u^{-2\times 3}y^{2\times 3}z^{-3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
1728\times \frac{1}{u^{6}}y^{2\times 3}z^{-3}
Whakareatia -2 ki te 3.
1728\times \frac{1}{u^{6}}y^{6}z^{-3}
Whakareatia 2 ki te 3.
1728\times \frac{1}{u^{6}}y^{6}\times \frac{1}{z^{3}}
Whakareatia -1 ki te 3.