Tīpoka ki ngā ihirangi matua
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7^{2}+\left(7-6\right)^{2}=r^{2}
Tangohia te 5 i te 12, ka 7.
49+\left(7-6\right)^{2}=r^{2}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
49+1^{2}=r^{2}
Tangohia te 6 i te 7, ka 1.
49+1=r^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
50=r^{2}
Tāpirihia te 49 ki te 1, ka 50.
r^{2}=50
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
r=5\sqrt{2} r=-5\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
7^{2}+\left(7-6\right)^{2}=r^{2}
Tangohia te 5 i te 12, ka 7.
49+\left(7-6\right)^{2}=r^{2}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
49+1^{2}=r^{2}
Tangohia te 6 i te 7, ka 1.
49+1=r^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
50=r^{2}
Tāpirihia te 49 ki te 1, ka 50.
r^{2}=50
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
r^{2}-50=0
Tangohia te 50 mai i ngā taha e rua.
r=\frac{0±\sqrt{0^{2}-4\left(-50\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -50 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-50\right)}}{2}
Pūrua 0.
r=\frac{0±\sqrt{200}}{2}
Whakareatia -4 ki te -50.
r=\frac{0±10\sqrt{2}}{2}
Tuhia te pūtakerua o te 200.
r=5\sqrt{2}
Nā, me whakaoti te whārite r=\frac{0±10\sqrt{2}}{2} ina he tāpiri te ±.
r=-5\sqrt{2}
Nā, me whakaoti te whārite r=\frac{0±10\sqrt{2}}{2} ina he tango te ±.
r=5\sqrt{2} r=-5\sqrt{2}
Kua oti te whārite te whakatau.