Aromātai
135.174354418586904928
Tauwehe
\frac{13 \cdot 324938351967756983}{2 ^ {13} \cdot 5 ^ {18}} = 135\frac{5448575580840960}{31250000000000000} = 135.17435441858692
Tohaina
Kua tāruatia ki te papatopenga
{(12)} ^ {2} + {(2.2)} ^ {2} - 2 \cdot 12 \cdot 2.2 \cdot 0.25881904510252074
Evaluate trigonometric functions in the problem
144+2.2^{2}-2\times 12\times 2.2\times 0.25881904510252074
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
144+4.84-2\times 12\times 2.2\times 0.25881904510252074
Tātaihia te 2.2 mā te pū o 2, kia riro ko 4.84.
148.84-2\times 12\times 2.2\times 0.25881904510252074
Tāpirihia te 144 ki te 4.84, ka 148.84.
148.84-24\times 2.2\times 0.25881904510252074
Whakareatia te 2 ki te 12, ka 24.
148.84-52.8\times 0.25881904510252074
Whakareatia te 24 ki te 2.2, ka 52.8.
148.84-13.665645581413095072
Whakareatia te 52.8 ki te 0.25881904510252074, ka 13.665645581413095072.
135.174354418586904928
Tangohia te 13.665645581413095072 i te 148.84, ka 135.174354418586904928.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}