Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

110^{n}=\frac{1}{3855}
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(110^{n})=\log(\frac{1}{3855})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
n\log(110)=\log(\frac{1}{3855})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
n=\frac{\log(\frac{1}{3855})}{\log(110)}
Whakawehea ngā taha e rua ki te \log(110).
n=\log_{110}\left(\frac{1}{3855}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).