Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(11r+4is\right)\left(11r-4si\right)
Whakareatia te 4 ki te i, ka 4i.
\left(11r+4is\right)\left(11r-4is\right)
Whakareatia te 4 ki te i, ka 4i.
\left(11r\right)^{2}-\left(4is\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
11^{2}r^{2}-\left(4is\right)^{2}
Whakarohaina te \left(11r\right)^{2}.
121r^{2}-\left(4is\right)^{2}
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
121r^{2}-\left(4i\right)^{2}s^{2}
Whakarohaina te \left(4is\right)^{2}.
121r^{2}-\left(-16s^{2}\right)
Tātaihia te 4i mā te pū o 2, kia riro ko -16.
121r^{2}+16s^{2}
Ko te tauaro o -16s^{2} ko 16s^{2}.
\left(11r+4is\right)\left(11r-4si\right)
Whakareatia te 4 ki te i, ka 4i.
\left(11r+4is\right)\left(11r-4is\right)
Whakareatia te 4 ki te i, ka 4i.
\left(11r\right)^{2}-\left(4is\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
11^{2}r^{2}-\left(4is\right)^{2}
Whakarohaina te \left(11r\right)^{2}.
121r^{2}-\left(4is\right)^{2}
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
121r^{2}-\left(4i\right)^{2}s^{2}
Whakarohaina te \left(4is\right)^{2}.
121r^{2}-\left(-16s^{2}\right)
Tātaihia te 4i mā te pū o 2, kia riro ko -16.
121r^{2}+16s^{2}
Ko te tauaro o -16s^{2} ko 16s^{2}.