Whakaoti mō x (complex solution)
x=-\sqrt{61}i\approx -0-7.810249676i
x=\sqrt{61}i\approx 7.810249676i
Graph
Tohaina
Kua tāruatia ki te papatopenga
121+22x+x^{2}+\left(11-x\right)^{2}=120
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(11+x\right)^{2}.
121+22x+x^{2}+121-22x+x^{2}=120
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(11-x\right)^{2}.
242+22x+x^{2}-22x+x^{2}=120
Tāpirihia te 121 ki te 121, ka 242.
242+x^{2}+x^{2}=120
Pahekotia te 22x me -22x, ka 0.
242+2x^{2}=120
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}=120-242
Tangohia te 242 mai i ngā taha e rua.
2x^{2}=-122
Tangohia te 242 i te 120, ka -122.
x^{2}=\frac{-122}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=-61
Whakawehea te -122 ki te 2, kia riro ko -61.
x=\sqrt{61}i x=-\sqrt{61}i
Kua oti te whārite te whakatau.
121+22x+x^{2}+\left(11-x\right)^{2}=120
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(11+x\right)^{2}.
121+22x+x^{2}+121-22x+x^{2}=120
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(11-x\right)^{2}.
242+22x+x^{2}-22x+x^{2}=120
Tāpirihia te 121 ki te 121, ka 242.
242+x^{2}+x^{2}=120
Pahekotia te 22x me -22x, ka 0.
242+2x^{2}=120
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
242+2x^{2}-120=0
Tangohia te 120 mai i ngā taha e rua.
122+2x^{2}=0
Tangohia te 120 i te 242, ka 122.
2x^{2}+122=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 122}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me 122 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times 122}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\times 122}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{-976}}{2\times 2}
Whakareatia -8 ki te 122.
x=\frac{0±4\sqrt{61}i}{2\times 2}
Tuhia te pūtakerua o te -976.
x=\frac{0±4\sqrt{61}i}{4}
Whakareatia 2 ki te 2.
x=\sqrt{61}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{61}i}{4} ina he tāpiri te ±.
x=-\sqrt{61}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{61}i}{4} ina he tango te ±.
x=\sqrt{61}i x=-\sqrt{61}i
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}