Whakaoti mō T
T = \frac{10660}{121} = 88\frac{12}{121} \approx 88.099173554
Tohaina
Kua tāruatia ki te papatopenga
220500-2205T=\left(T-10\right)\times 336+\left(1-10\right)\times 1200\times 0
Whakamahia te āhuatanga tohatoha hei whakarea te 100-T ki te 2205.
220500-2205T=336T-3360+\left(1-10\right)\times 1200\times 0
Whakamahia te āhuatanga tohatoha hei whakarea te T-10 ki te 336.
220500-2205T=336T-3360-9\times 1200\times 0
Tangohia te 10 i te 1, ka -9.
220500-2205T=336T-3360-10800\times 0
Whakareatia te -9 ki te 1200, ka -10800.
220500-2205T=336T-3360+0
Whakareatia te -10800 ki te 0, ka 0.
220500-2205T=336T-3360
Tāpirihia te -3360 ki te 0, ka -3360.
220500-2205T-336T=-3360
Tangohia te 336T mai i ngā taha e rua.
220500-2541T=-3360
Pahekotia te -2205T me -336T, ka -2541T.
-2541T=-3360-220500
Tangohia te 220500 mai i ngā taha e rua.
-2541T=-223860
Tangohia te 220500 i te -3360, ka -223860.
T=\frac{-223860}{-2541}
Whakawehea ngā taha e rua ki te -2541.
T=\frac{10660}{121}
Whakahekea te hautanga \frac{-223860}{-2541} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}