Whakaoti mō x
x = -\frac{400}{3} = -133\frac{1}{3} \approx -133.333333333
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
10000+x^{2}=\left(2x+100\right)^{2}
Tātaihia te 100 mā te pū o 2, kia riro ko 10000.
10000+x^{2}=4x^{2}+400x+10000
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+100\right)^{2}.
10000+x^{2}-4x^{2}=400x+10000
Tangohia te 4x^{2} mai i ngā taha e rua.
10000-3x^{2}=400x+10000
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
10000-3x^{2}-400x=10000
Tangohia te 400x mai i ngā taha e rua.
10000-3x^{2}-400x-10000=0
Tangohia te 10000 mai i ngā taha e rua.
-3x^{2}-400x=0
Tangohia te 10000 i te 10000, ka 0.
x\left(-3x-400\right)=0
Tauwehea te x.
x=0 x=-\frac{400}{3}
Hei kimi otinga whārite, me whakaoti te x=0 me te -3x-400=0.
10000+x^{2}=\left(2x+100\right)^{2}
Tātaihia te 100 mā te pū o 2, kia riro ko 10000.
10000+x^{2}=4x^{2}+400x+10000
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+100\right)^{2}.
10000+x^{2}-4x^{2}=400x+10000
Tangohia te 4x^{2} mai i ngā taha e rua.
10000-3x^{2}=400x+10000
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
10000-3x^{2}-400x=10000
Tangohia te 400x mai i ngā taha e rua.
10000-3x^{2}-400x-10000=0
Tangohia te 10000 mai i ngā taha e rua.
-3x^{2}-400x=0
Tangohia te 10000 i te 10000, ka 0.
x=\frac{-\left(-400\right)±\sqrt{\left(-400\right)^{2}}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -400 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-400\right)±400}{2\left(-3\right)}
Tuhia te pūtakerua o te \left(-400\right)^{2}.
x=\frac{400±400}{2\left(-3\right)}
Ko te tauaro o -400 ko 400.
x=\frac{400±400}{-6}
Whakareatia 2 ki te -3.
x=\frac{800}{-6}
Nā, me whakaoti te whārite x=\frac{400±400}{-6} ina he tāpiri te ±. Tāpiri 400 ki te 400.
x=-\frac{400}{3}
Whakahekea te hautanga \frac{800}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{0}{-6}
Nā, me whakaoti te whārite x=\frac{400±400}{-6} ina he tango te ±. Tango 400 mai i 400.
x=0
Whakawehe 0 ki te -6.
x=-\frac{400}{3} x=0
Kua oti te whārite te whakatau.
10000+x^{2}=\left(2x+100\right)^{2}
Tātaihia te 100 mā te pū o 2, kia riro ko 10000.
10000+x^{2}=4x^{2}+400x+10000
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+100\right)^{2}.
10000+x^{2}-4x^{2}=400x+10000
Tangohia te 4x^{2} mai i ngā taha e rua.
10000-3x^{2}=400x+10000
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
10000-3x^{2}-400x=10000
Tangohia te 400x mai i ngā taha e rua.
-3x^{2}-400x=10000-10000
Tangohia te 10000 mai i ngā taha e rua.
-3x^{2}-400x=0
Tangohia te 10000 i te 10000, ka 0.
\frac{-3x^{2}-400x}{-3}=\frac{0}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{400}{-3}\right)x=\frac{0}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+\frac{400}{3}x=\frac{0}{-3}
Whakawehe -400 ki te -3.
x^{2}+\frac{400}{3}x=0
Whakawehe 0 ki te -3.
x^{2}+\frac{400}{3}x+\left(\frac{200}{3}\right)^{2}=\left(\frac{200}{3}\right)^{2}
Whakawehea te \frac{400}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{200}{3}. Nā, tāpiria te pūrua o te \frac{200}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{400}{3}x+\frac{40000}{9}=\frac{40000}{9}
Pūruatia \frac{200}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{200}{3}\right)^{2}=\frac{40000}{9}
Tauwehea x^{2}+\frac{400}{3}x+\frac{40000}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{200}{3}\right)^{2}}=\sqrt{\frac{40000}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{200}{3}=\frac{200}{3} x+\frac{200}{3}=-\frac{200}{3}
Whakarūnātia.
x=0 x=-\frac{400}{3}
Me tango \frac{200}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}