Whakaoti mō x
x=100
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
20000+100x-x^{2}=20000
Whakamahia te āhuatanga tuaritanga hei whakarea te 100+x ki te 200-x ka whakakotahi i ngā kupu rite.
20000+100x-x^{2}-20000=0
Tangohia te 20000 mai i ngā taha e rua.
100x-x^{2}=0
Tangohia te 20000 i te 20000, ka 0.
-x^{2}+100x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-100±\sqrt{100^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 100 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±100}{2\left(-1\right)}
Tuhia te pūtakerua o te 100^{2}.
x=\frac{-100±100}{-2}
Whakareatia 2 ki te -1.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{-100±100}{-2} ina he tāpiri te ±. Tāpiri -100 ki te 100.
x=0
Whakawehe 0 ki te -2.
x=-\frac{200}{-2}
Nā, me whakaoti te whārite x=\frac{-100±100}{-2} ina he tango te ±. Tango 100 mai i -100.
x=100
Whakawehe -200 ki te -2.
x=0 x=100
Kua oti te whārite te whakatau.
20000+100x-x^{2}=20000
Whakamahia te āhuatanga tuaritanga hei whakarea te 100+x ki te 200-x ka whakakotahi i ngā kupu rite.
100x-x^{2}=20000-20000
Tangohia te 20000 mai i ngā taha e rua.
100x-x^{2}=0
Tangohia te 20000 i te 20000, ka 0.
-x^{2}+100x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+100x}{-1}=\frac{0}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{100}{-1}x=\frac{0}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-100x=\frac{0}{-1}
Whakawehe 100 ki te -1.
x^{2}-100x=0
Whakawehe 0 ki te -1.
x^{2}-100x+\left(-50\right)^{2}=\left(-50\right)^{2}
Whakawehea te -100, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -50. Nā, tāpiria te pūrua o te -50 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-100x+2500=2500
Pūrua -50.
\left(x-50\right)^{2}=2500
Tauwehea te x^{2}-100x+2500. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-50\right)^{2}}=\sqrt{2500}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-50=50 x-50=-50
Whakarūnātia.
x=100 x=0
Me tāpiri 50 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}