Whakaoti mō x
x=10\sqrt{31}-40\approx 15.677643628
x=-10\sqrt{31}-40\approx -95.677643628
Graph
Tohaina
Kua tāruatia ki te papatopenga
6000+320x+4x^{2}=200\times 60
Whakamahia te āhuatanga tuaritanga hei whakarea te 100+2x ki te 60+2x ka whakakotahi i ngā kupu rite.
6000+320x+4x^{2}=12000
Whakareatia te 200 ki te 60, ka 12000.
6000+320x+4x^{2}-12000=0
Tangohia te 12000 mai i ngā taha e rua.
-6000+320x+4x^{2}=0
Tangohia te 12000 i te 6000, ka -6000.
4x^{2}+320x-6000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-320±\sqrt{320^{2}-4\times 4\left(-6000\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 320 mō b, me -6000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-320±\sqrt{102400-4\times 4\left(-6000\right)}}{2\times 4}
Pūrua 320.
x=\frac{-320±\sqrt{102400-16\left(-6000\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-320±\sqrt{102400+96000}}{2\times 4}
Whakareatia -16 ki te -6000.
x=\frac{-320±\sqrt{198400}}{2\times 4}
Tāpiri 102400 ki te 96000.
x=\frac{-320±80\sqrt{31}}{2\times 4}
Tuhia te pūtakerua o te 198400.
x=\frac{-320±80\sqrt{31}}{8}
Whakareatia 2 ki te 4.
x=\frac{80\sqrt{31}-320}{8}
Nā, me whakaoti te whārite x=\frac{-320±80\sqrt{31}}{8} ina he tāpiri te ±. Tāpiri -320 ki te 80\sqrt{31}.
x=10\sqrt{31}-40
Whakawehe -320+80\sqrt{31} ki te 8.
x=\frac{-80\sqrt{31}-320}{8}
Nā, me whakaoti te whārite x=\frac{-320±80\sqrt{31}}{8} ina he tango te ±. Tango 80\sqrt{31} mai i -320.
x=-10\sqrt{31}-40
Whakawehe -320-80\sqrt{31} ki te 8.
x=10\sqrt{31}-40 x=-10\sqrt{31}-40
Kua oti te whārite te whakatau.
6000+320x+4x^{2}=200\times 60
Whakamahia te āhuatanga tuaritanga hei whakarea te 100+2x ki te 60+2x ka whakakotahi i ngā kupu rite.
6000+320x+4x^{2}=12000
Whakareatia te 200 ki te 60, ka 12000.
320x+4x^{2}=12000-6000
Tangohia te 6000 mai i ngā taha e rua.
320x+4x^{2}=6000
Tangohia te 6000 i te 12000, ka 6000.
4x^{2}+320x=6000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4x^{2}+320x}{4}=\frac{6000}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{320}{4}x=\frac{6000}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+80x=\frac{6000}{4}
Whakawehe 320 ki te 4.
x^{2}+80x=1500
Whakawehe 6000 ki te 4.
x^{2}+80x+40^{2}=1500+40^{2}
Whakawehea te 80, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 40. Nā, tāpiria te pūrua o te 40 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+80x+1600=1500+1600
Pūrua 40.
x^{2}+80x+1600=3100
Tāpiri 1500 ki te 1600.
\left(x+40\right)^{2}=3100
Tauwehea x^{2}+80x+1600. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+40\right)^{2}}=\sqrt{3100}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+40=10\sqrt{31} x+40=-10\sqrt{31}
Whakarūnātia.
x=10\sqrt{31}-40 x=-10\sqrt{31}-40
Me tango 40 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}