Whakaoti mō M
\left\{\begin{matrix}M=\frac{10m^{2}}{v_{1}}\text{, }&v_{1}\neq 0\\M\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Whakaoti mō m
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m=\frac{\sqrt{10Mv_{1}}}{10}\text{; }m=-\frac{\sqrt{10Mv_{1}}}{10}\text{, }&\left(v_{1}\geq 0\text{ and }M\geq 0\right)\text{ or }\left(M\leq 0\text{ and }v_{1}\leq 0\right)\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
mMv_{1}=mm\times 10m
Me whakakore te 10 ki ngā taha e rua.
mMv_{1}=m^{2}\times 10m
Whakareatia te m ki te m, ka m^{2}.
mMv_{1}=m^{3}\times 10
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
mv_{1}M=10m^{3}
He hanga arowhānui tō te whārite.
\frac{mv_{1}M}{mv_{1}}=\frac{10m^{3}}{mv_{1}}
Whakawehea ngā taha e rua ki te mv_{1}.
M=\frac{10m^{3}}{mv_{1}}
Mā te whakawehe ki te mv_{1} ka wetekia te whakareanga ki te mv_{1}.
M=\frac{10m^{2}}{v_{1}}
Whakawehe 10m^{3} ki te mv_{1}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}