Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

10a-2b+1-\frac{1}{3}\times 2a-\frac{1}{3}\left(-9\right)b-\frac{1}{10}\left(-20-8a+5b\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{3} ki te 2a-9b.
10a-2b+1+\frac{-2}{3}a-\frac{1}{3}\left(-9\right)b-\frac{1}{10}\left(-20-8a+5b\right)
Tuhia te -\frac{1}{3}\times 2 hei hautanga kotahi.
10a-2b+1-\frac{2}{3}a-\frac{1}{3}\left(-9\right)b-\frac{1}{10}\left(-20-8a+5b\right)
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
10a-2b+1-\frac{2}{3}a+\frac{-\left(-9\right)}{3}b-\frac{1}{10}\left(-20-8a+5b\right)
Tuhia te -\frac{1}{3}\left(-9\right) hei hautanga kotahi.
10a-2b+1-\frac{2}{3}a+\frac{9}{3}b-\frac{1}{10}\left(-20-8a+5b\right)
Whakareatia te -1 ki te -9, ka 9.
10a-2b+1-\frac{2}{3}a+3b-\frac{1}{10}\left(-20-8a+5b\right)
Whakawehea te 9 ki te 3, kia riro ko 3.
\frac{28}{3}a-2b+1+3b-\frac{1}{10}\left(-20-8a+5b\right)
Pahekotia te 10a me -\frac{2}{3}a, ka \frac{28}{3}a.
\frac{28}{3}a+b+1-\frac{1}{10}\left(-20-8a+5b\right)
Pahekotia te -2b me 3b, ka b.
\frac{28}{3}a+b+1-\frac{1}{10}\left(-20\right)-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{10} ki te -20-8a+5b.
\frac{28}{3}a+b+1+\frac{-\left(-20\right)}{10}-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Tuhia te -\frac{1}{10}\left(-20\right) hei hautanga kotahi.
\frac{28}{3}a+b+1+\frac{20}{10}-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Whakareatia te -1 ki te -20, ka 20.
\frac{28}{3}a+b+1+2-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Whakawehea te 20 ki te 10, kia riro ko 2.
\frac{28}{3}a+b+1+2+\frac{-\left(-8\right)}{10}a-\frac{1}{10}\times 5b
Tuhia te -\frac{1}{10}\left(-8\right) hei hautanga kotahi.
\frac{28}{3}a+b+1+2+\frac{8}{10}a-\frac{1}{10}\times 5b
Whakareatia te -1 ki te -8, ka 8.
\frac{28}{3}a+b+1+2+\frac{4}{5}a-\frac{1}{10}\times 5b
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{28}{3}a+b+1+2+\frac{4}{5}a+\frac{-5}{10}b
Tuhia te -\frac{1}{10}\times 5 hei hautanga kotahi.
\frac{28}{3}a+b+1+2+\frac{4}{5}a-\frac{1}{2}b
Whakahekea te hautanga \frac{-5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{28}{3}a+b+3+\frac{4}{5}a-\frac{1}{2}b
Tāpirihia te 1 ki te 2, ka 3.
\frac{152}{15}a+b+3-\frac{1}{2}b
Pahekotia te \frac{28}{3}a me \frac{4}{5}a, ka \frac{152}{15}a.
\frac{152}{15}a+\frac{1}{2}b+3
Pahekotia te b me -\frac{1}{2}b, ka \frac{1}{2}b.
10a-2b+1-\frac{1}{3}\times 2a-\frac{1}{3}\left(-9\right)b-\frac{1}{10}\left(-20-8a+5b\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{3} ki te 2a-9b.
10a-2b+1+\frac{-2}{3}a-\frac{1}{3}\left(-9\right)b-\frac{1}{10}\left(-20-8a+5b\right)
Tuhia te -\frac{1}{3}\times 2 hei hautanga kotahi.
10a-2b+1-\frac{2}{3}a-\frac{1}{3}\left(-9\right)b-\frac{1}{10}\left(-20-8a+5b\right)
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
10a-2b+1-\frac{2}{3}a+\frac{-\left(-9\right)}{3}b-\frac{1}{10}\left(-20-8a+5b\right)
Tuhia te -\frac{1}{3}\left(-9\right) hei hautanga kotahi.
10a-2b+1-\frac{2}{3}a+\frac{9}{3}b-\frac{1}{10}\left(-20-8a+5b\right)
Whakareatia te -1 ki te -9, ka 9.
10a-2b+1-\frac{2}{3}a+3b-\frac{1}{10}\left(-20-8a+5b\right)
Whakawehea te 9 ki te 3, kia riro ko 3.
\frac{28}{3}a-2b+1+3b-\frac{1}{10}\left(-20-8a+5b\right)
Pahekotia te 10a me -\frac{2}{3}a, ka \frac{28}{3}a.
\frac{28}{3}a+b+1-\frac{1}{10}\left(-20-8a+5b\right)
Pahekotia te -2b me 3b, ka b.
\frac{28}{3}a+b+1-\frac{1}{10}\left(-20\right)-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{10} ki te -20-8a+5b.
\frac{28}{3}a+b+1+\frac{-\left(-20\right)}{10}-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Tuhia te -\frac{1}{10}\left(-20\right) hei hautanga kotahi.
\frac{28}{3}a+b+1+\frac{20}{10}-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Whakareatia te -1 ki te -20, ka 20.
\frac{28}{3}a+b+1+2-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Whakawehea te 20 ki te 10, kia riro ko 2.
\frac{28}{3}a+b+1+2+\frac{-\left(-8\right)}{10}a-\frac{1}{10}\times 5b
Tuhia te -\frac{1}{10}\left(-8\right) hei hautanga kotahi.
\frac{28}{3}a+b+1+2+\frac{8}{10}a-\frac{1}{10}\times 5b
Whakareatia te -1 ki te -8, ka 8.
\frac{28}{3}a+b+1+2+\frac{4}{5}a-\frac{1}{10}\times 5b
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{28}{3}a+b+1+2+\frac{4}{5}a+\frac{-5}{10}b
Tuhia te -\frac{1}{10}\times 5 hei hautanga kotahi.
\frac{28}{3}a+b+1+2+\frac{4}{5}a-\frac{1}{2}b
Whakahekea te hautanga \frac{-5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{28}{3}a+b+3+\frac{4}{5}a-\frac{1}{2}b
Tāpirihia te 1 ki te 2, ka 3.
\frac{152}{15}a+b+3-\frac{1}{2}b
Pahekotia te \frac{28}{3}a me \frac{4}{5}a, ka \frac{152}{15}a.
\frac{152}{15}a+\frac{1}{2}b+3
Pahekotia te b me -\frac{1}{2}b, ka \frac{1}{2}b.