Aromātai
\frac{b}{2}+\frac{152a}{15}+3
Whakaroha
\frac{b}{2}+\frac{152a}{15}+3
Tohaina
Kua tāruatia ki te papatopenga
10a-2b+1-\frac{1}{3}\times 2a-\frac{1}{3}\left(-9\right)b-\frac{1}{10}\left(-20-8a+5b\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{3} ki te 2a-9b.
10a-2b+1+\frac{-2}{3}a-\frac{1}{3}\left(-9\right)b-\frac{1}{10}\left(-20-8a+5b\right)
Tuhia te -\frac{1}{3}\times 2 hei hautanga kotahi.
10a-2b+1-\frac{2}{3}a-\frac{1}{3}\left(-9\right)b-\frac{1}{10}\left(-20-8a+5b\right)
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
10a-2b+1-\frac{2}{3}a+\frac{-\left(-9\right)}{3}b-\frac{1}{10}\left(-20-8a+5b\right)
Tuhia te -\frac{1}{3}\left(-9\right) hei hautanga kotahi.
10a-2b+1-\frac{2}{3}a+\frac{9}{3}b-\frac{1}{10}\left(-20-8a+5b\right)
Whakareatia te -1 ki te -9, ka 9.
10a-2b+1-\frac{2}{3}a+3b-\frac{1}{10}\left(-20-8a+5b\right)
Whakawehea te 9 ki te 3, kia riro ko 3.
\frac{28}{3}a-2b+1+3b-\frac{1}{10}\left(-20-8a+5b\right)
Pahekotia te 10a me -\frac{2}{3}a, ka \frac{28}{3}a.
\frac{28}{3}a+b+1-\frac{1}{10}\left(-20-8a+5b\right)
Pahekotia te -2b me 3b, ka b.
\frac{28}{3}a+b+1-\frac{1}{10}\left(-20\right)-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{10} ki te -20-8a+5b.
\frac{28}{3}a+b+1+\frac{-\left(-20\right)}{10}-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Tuhia te -\frac{1}{10}\left(-20\right) hei hautanga kotahi.
\frac{28}{3}a+b+1+\frac{20}{10}-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Whakareatia te -1 ki te -20, ka 20.
\frac{28}{3}a+b+1+2-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Whakawehea te 20 ki te 10, kia riro ko 2.
\frac{28}{3}a+b+1+2+\frac{-\left(-8\right)}{10}a-\frac{1}{10}\times 5b
Tuhia te -\frac{1}{10}\left(-8\right) hei hautanga kotahi.
\frac{28}{3}a+b+1+2+\frac{8}{10}a-\frac{1}{10}\times 5b
Whakareatia te -1 ki te -8, ka 8.
\frac{28}{3}a+b+1+2+\frac{4}{5}a-\frac{1}{10}\times 5b
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{28}{3}a+b+1+2+\frac{4}{5}a+\frac{-5}{10}b
Tuhia te -\frac{1}{10}\times 5 hei hautanga kotahi.
\frac{28}{3}a+b+1+2+\frac{4}{5}a-\frac{1}{2}b
Whakahekea te hautanga \frac{-5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{28}{3}a+b+3+\frac{4}{5}a-\frac{1}{2}b
Tāpirihia te 1 ki te 2, ka 3.
\frac{152}{15}a+b+3-\frac{1}{2}b
Pahekotia te \frac{28}{3}a me \frac{4}{5}a, ka \frac{152}{15}a.
\frac{152}{15}a+\frac{1}{2}b+3
Pahekotia te b me -\frac{1}{2}b, ka \frac{1}{2}b.
10a-2b+1-\frac{1}{3}\times 2a-\frac{1}{3}\left(-9\right)b-\frac{1}{10}\left(-20-8a+5b\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{3} ki te 2a-9b.
10a-2b+1+\frac{-2}{3}a-\frac{1}{3}\left(-9\right)b-\frac{1}{10}\left(-20-8a+5b\right)
Tuhia te -\frac{1}{3}\times 2 hei hautanga kotahi.
10a-2b+1-\frac{2}{3}a-\frac{1}{3}\left(-9\right)b-\frac{1}{10}\left(-20-8a+5b\right)
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
10a-2b+1-\frac{2}{3}a+\frac{-\left(-9\right)}{3}b-\frac{1}{10}\left(-20-8a+5b\right)
Tuhia te -\frac{1}{3}\left(-9\right) hei hautanga kotahi.
10a-2b+1-\frac{2}{3}a+\frac{9}{3}b-\frac{1}{10}\left(-20-8a+5b\right)
Whakareatia te -1 ki te -9, ka 9.
10a-2b+1-\frac{2}{3}a+3b-\frac{1}{10}\left(-20-8a+5b\right)
Whakawehea te 9 ki te 3, kia riro ko 3.
\frac{28}{3}a-2b+1+3b-\frac{1}{10}\left(-20-8a+5b\right)
Pahekotia te 10a me -\frac{2}{3}a, ka \frac{28}{3}a.
\frac{28}{3}a+b+1-\frac{1}{10}\left(-20-8a+5b\right)
Pahekotia te -2b me 3b, ka b.
\frac{28}{3}a+b+1-\frac{1}{10}\left(-20\right)-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{10} ki te -20-8a+5b.
\frac{28}{3}a+b+1+\frac{-\left(-20\right)}{10}-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Tuhia te -\frac{1}{10}\left(-20\right) hei hautanga kotahi.
\frac{28}{3}a+b+1+\frac{20}{10}-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Whakareatia te -1 ki te -20, ka 20.
\frac{28}{3}a+b+1+2-\frac{1}{10}\left(-8\right)a-\frac{1}{10}\times 5b
Whakawehea te 20 ki te 10, kia riro ko 2.
\frac{28}{3}a+b+1+2+\frac{-\left(-8\right)}{10}a-\frac{1}{10}\times 5b
Tuhia te -\frac{1}{10}\left(-8\right) hei hautanga kotahi.
\frac{28}{3}a+b+1+2+\frac{8}{10}a-\frac{1}{10}\times 5b
Whakareatia te -1 ki te -8, ka 8.
\frac{28}{3}a+b+1+2+\frac{4}{5}a-\frac{1}{10}\times 5b
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{28}{3}a+b+1+2+\frac{4}{5}a+\frac{-5}{10}b
Tuhia te -\frac{1}{10}\times 5 hei hautanga kotahi.
\frac{28}{3}a+b+1+2+\frac{4}{5}a-\frac{1}{2}b
Whakahekea te hautanga \frac{-5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{28}{3}a+b+3+\frac{4}{5}a-\frac{1}{2}b
Tāpirihia te 1 ki te 2, ka 3.
\frac{152}{15}a+b+3-\frac{1}{2}b
Pahekotia te \frac{28}{3}a me \frac{4}{5}a, ka \frac{152}{15}a.
\frac{152}{15}a+\frac{1}{2}b+3
Pahekotia te b me -\frac{1}{2}b, ka \frac{1}{2}b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}