Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(10-\sqrt{2}c+12\right)\left(\frac{\sqrt{2}c}{2}+10\right)\times \frac{1}{2}
Tuhia te \frac{\sqrt{2}}{2}c hei hautanga kotahi.
\left(10-\sqrt{2}c+12\right)\left(\frac{\sqrt{2}c}{2}+\frac{10\times 2}{2}\right)\times \frac{1}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 10 ki te \frac{2}{2}.
\left(10-\sqrt{2}c+12\right)\times \frac{\sqrt{2}c+10\times 2}{2}\times \frac{1}{2}
Tā te mea he rite te tauraro o \frac{\sqrt{2}c}{2} me \frac{10\times 2}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(10-\sqrt{2}c+12\right)\times \frac{\sqrt{2}c+20}{2}\times \frac{1}{2}
Mahia ngā whakarea i roto o \sqrt{2}c+10\times 2.
\frac{\left(10-\sqrt{2}c+12\right)\left(\sqrt{2}c+20\right)}{2}\times \frac{1}{2}
Tuhia te \left(10-\sqrt{2}c+12\right)\times \frac{\sqrt{2}c+20}{2} hei hautanga kotahi.
\frac{\left(10-\sqrt{2}c+12\right)\left(\sqrt{2}c+20\right)}{2\times 2}
Me whakarea te \frac{\left(10-\sqrt{2}c+12\right)\left(\sqrt{2}c+20\right)}{2} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(10-\sqrt{2}c+12\right)\left(\sqrt{2}c+20\right)}{4}
Whakareatia te 2 ki te 2, ka 4.
\frac{\left(22-\sqrt{2}c\right)\left(\sqrt{2}c+20\right)}{4}
Tāpirihia te 10 ki te 12, ka 22.
\frac{22\sqrt{2}c+440-\left(\sqrt{2}\right)^{2}c^{2}-20c\sqrt{2}}{4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 22-\sqrt{2}c ki ia tau o \sqrt{2}c+20.
\frac{22\sqrt{2}c+440-2c^{2}-20c\sqrt{2}}{4}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2\sqrt{2}c+440-2c^{2}}{4}
Pahekotia te 22\sqrt{2}c me -20c\sqrt{2}, ka 2\sqrt{2}c.