Whakaoti mō x
x=30\sqrt{151}+360\approx 728.646171823
x=360-30\sqrt{151}\approx -8.646171823
Graph
Tohaina
Kua tāruatia ki te papatopenga
7300+720x-x^{2}=1000
Whakamahia te āhuatanga tuaritanga hei whakarea te 10+x ki te 730-x ka whakakotahi i ngā kupu rite.
7300+720x-x^{2}-1000=0
Tangohia te 1000 mai i ngā taha e rua.
6300+720x-x^{2}=0
Tangohia te 1000 i te 7300, ka 6300.
-x^{2}+720x+6300=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-720±\sqrt{720^{2}-4\left(-1\right)\times 6300}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 720 mō b, me 6300 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-720±\sqrt{518400-4\left(-1\right)\times 6300}}{2\left(-1\right)}
Pūrua 720.
x=\frac{-720±\sqrt{518400+4\times 6300}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-720±\sqrt{518400+25200}}{2\left(-1\right)}
Whakareatia 4 ki te 6300.
x=\frac{-720±\sqrt{543600}}{2\left(-1\right)}
Tāpiri 518400 ki te 25200.
x=\frac{-720±60\sqrt{151}}{2\left(-1\right)}
Tuhia te pūtakerua o te 543600.
x=\frac{-720±60\sqrt{151}}{-2}
Whakareatia 2 ki te -1.
x=\frac{60\sqrt{151}-720}{-2}
Nā, me whakaoti te whārite x=\frac{-720±60\sqrt{151}}{-2} ina he tāpiri te ±. Tāpiri -720 ki te 60\sqrt{151}.
x=360-30\sqrt{151}
Whakawehe -720+60\sqrt{151} ki te -2.
x=\frac{-60\sqrt{151}-720}{-2}
Nā, me whakaoti te whārite x=\frac{-720±60\sqrt{151}}{-2} ina he tango te ±. Tango 60\sqrt{151} mai i -720.
x=30\sqrt{151}+360
Whakawehe -720-60\sqrt{151} ki te -2.
x=360-30\sqrt{151} x=30\sqrt{151}+360
Kua oti te whārite te whakatau.
7300+720x-x^{2}=1000
Whakamahia te āhuatanga tuaritanga hei whakarea te 10+x ki te 730-x ka whakakotahi i ngā kupu rite.
720x-x^{2}=1000-7300
Tangohia te 7300 mai i ngā taha e rua.
720x-x^{2}=-6300
Tangohia te 7300 i te 1000, ka -6300.
-x^{2}+720x=-6300
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+720x}{-1}=-\frac{6300}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{720}{-1}x=-\frac{6300}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-720x=-\frac{6300}{-1}
Whakawehe 720 ki te -1.
x^{2}-720x=6300
Whakawehe -6300 ki te -1.
x^{2}-720x+\left(-360\right)^{2}=6300+\left(-360\right)^{2}
Whakawehea te -720, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -360. Nā, tāpiria te pūrua o te -360 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-720x+129600=6300+129600
Pūrua -360.
x^{2}-720x+129600=135900
Tāpiri 6300 ki te 129600.
\left(x-360\right)^{2}=135900
Tauwehea x^{2}-720x+129600. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-360\right)^{2}}=\sqrt{135900}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-360=30\sqrt{151} x-360=-30\sqrt{151}
Whakarūnātia.
x=30\sqrt{151}+360 x=360-30\sqrt{151}
Me tāpiri 360 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}