Aromātai
\frac{131}{30}\approx 4.366666667
Tauwehe
\frac{131}{2 \cdot 3 \cdot 5} = 4\frac{11}{30} = 4.366666666666666
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( 1.2 + 6 ) - ( \frac { 3 } { 4 } : 0.5 + 1 \frac { 1 } { 3 } )
Tohaina
Kua tāruatia ki te papatopenga
7.2-\left(\frac{\frac{3}{4}}{0.5}+\frac{1\times 3+1}{3}\right)
Tāpirihia te 1.2 ki te 6, ka 7.2.
7.2-\left(\frac{3}{4\times 0.5}+\frac{1\times 3+1}{3}\right)
Tuhia te \frac{\frac{3}{4}}{0.5} hei hautanga kotahi.
7.2-\left(\frac{3}{2}+\frac{1\times 3+1}{3}\right)
Whakareatia te 4 ki te 0.5, ka 2.
7.2-\left(\frac{3}{2}+\frac{3+1}{3}\right)
Whakareatia te 1 ki te 3, ka 3.
7.2-\left(\frac{3}{2}+\frac{4}{3}\right)
Tāpirihia te 3 ki te 1, ka 4.
7.2-\left(\frac{9}{6}+\frac{8}{6}\right)
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{3}{2} me \frac{4}{3} ki te hautau me te tautūnga 6.
7.2-\frac{9+8}{6}
Tā te mea he rite te tauraro o \frac{9}{6} me \frac{8}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
7.2-\frac{17}{6}
Tāpirihia te 9 ki te 8, ka 17.
\frac{36}{5}-\frac{17}{6}
Me tahuri ki tau ā-ira 7.2 ki te hautau \frac{72}{10}. Whakahekea te hautanga \frac{72}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{216}{30}-\frac{85}{30}
Ko te maha noa iti rawa atu o 5 me 6 ko 30. Me tahuri \frac{36}{5} me \frac{17}{6} ki te hautau me te tautūnga 30.
\frac{216-85}{30}
Tā te mea he rite te tauraro o \frac{216}{30} me \frac{85}{30}, me tango rāua mā te tango i ō raua taurunga.
\frac{131}{30}
Tangohia te 85 i te 216, ka 131.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}