( 1,3 \times 0,5 - \frac { 1 } { 20 } )
Kōmaka
0,1,\frac{99}{20}
Aromātai
1,0,\frac{99}{20}
Tohaina
Kua tāruatia ki te papatopenga
sort(1,0,5-\frac{1}{20})
Whakareatia te 3 ki te 0, ka 0.
sort(1,0,\frac{100}{20}-\frac{1}{20})
Me tahuri te 5 ki te hautau \frac{100}{20}.
sort(1,0,\frac{100-1}{20})
Tā te mea he rite te tauraro o \frac{100}{20} me \frac{1}{20}, me tango rāua mā te tango i ō raua taurunga.
sort(1,0,\frac{99}{20})
Tangohia te 1 i te 100, ka 99.
1,0,\frac{99}{20}
Tahuritia ngā tau ā-ira i te rārangi 1,0,\frac{99}{20} ki ngā hautanga.
1
Hei kōmaka i te rārangi, me tīmata mai i tētahi huānga 1 kotahi.
0,1
Me kōkuhu te 0 ki te tauwāhi tika i te rārangi hōu.
0,1,\frac{99}{20}
Me kōkuhu te \frac{99}{20} ki te tauwāhi tika i te rārangi hōu.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}