Aromātai
-127
Tauwehe
-127
Tohaina
Kua tāruatia ki te papatopenga
1^{2}-\left(8\sqrt{2}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
1-\left(8\sqrt{2}\right)^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
1-8^{2}\left(\sqrt{2}\right)^{2}
Whakarohaina te \left(8\sqrt{2}\right)^{2}.
1-64\left(\sqrt{2}\right)^{2}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
1-64\times 2
Ko te pūrua o \sqrt{2} ko 2.
1-128
Whakareatia te 64 ki te 2, ka 128.
-127
Tangohia te 128 i te 1, ka -127.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}