Aromātai
-31+25i
Wāhi Tūturu
-31
Tohaina
Kua tāruatia ki te papatopenga
1\left(-6\right)+1\times \left(-5i\right)-5i\left(-6\right)-5\left(-5\right)i^{2}
Me whakarea ngā tau matatini 1-5i me -6-5i pēnā i te whakarea huarua.
1\left(-6\right)+1\times \left(-5i\right)-5i\left(-6\right)-5\left(-5\right)\left(-1\right)
Hei tōna tikanga, ko te i^{2} ko -1.
-6-5i+30i-25
Mahia ngā whakarea.
-6-25+\left(-5+30\right)i
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa.
-31+25i
Mahia ngā tāpiri.
Re(1\left(-6\right)+1\times \left(-5i\right)-5i\left(-6\right)-5\left(-5\right)i^{2})
Me whakarea ngā tau matatini 1-5i me -6-5i pēnā i te whakarea huarua.
Re(1\left(-6\right)+1\times \left(-5i\right)-5i\left(-6\right)-5\left(-5\right)\left(-1\right))
Hei tōna tikanga, ko te i^{2} ko -1.
Re(-6-5i+30i-25)
Mahia ngā whakarea i roto o 1\left(-6\right)+1\times \left(-5i\right)-5i\left(-6\right)-5\left(-5\right)\left(-1\right).
Re(-6-25+\left(-5+30\right)i)
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -6-5i+30i-25.
Re(-31+25i)
Mahia ngā tāpiri i roto o -6-25+\left(-5+30\right)i.
-31
Ko te wāhi tūturu o -31+25i ko -31.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}