Aromātai
4
Tauwehe
2^{2}
Tohaina
Kua tāruatia ki te papatopenga
\left(1-81\right)^{3}+\left(3^{6}-3^{3}\right)\left(3^{6}+3^{3}\right)-2\times 3^{6}\left(3^{3}-1\right)+3\left(3^{4}-1\right)^{2}
Tātaihia te 3 mā te pū o 4, kia riro ko 81.
\left(-80\right)^{3}+\left(3^{6}-3^{3}\right)\left(3^{6}+3^{3}\right)-2\times 3^{6}\left(3^{3}-1\right)+3\left(3^{4}-1\right)^{2}
Tangohia te 81 i te 1, ka -80.
-512000+\left(3^{6}-3^{3}\right)\left(3^{6}+3^{3}\right)-2\times 3^{6}\left(3^{3}-1\right)+3\left(3^{4}-1\right)^{2}
Tātaihia te -80 mā te pū o 3, kia riro ko -512000.
-512000+\left(729-3^{3}\right)\left(3^{6}+3^{3}\right)-2\times 3^{6}\left(3^{3}-1\right)+3\left(3^{4}-1\right)^{2}
Tātaihia te 3 mā te pū o 6, kia riro ko 729.
-512000+\left(729-27\right)\left(3^{6}+3^{3}\right)-2\times 3^{6}\left(3^{3}-1\right)+3\left(3^{4}-1\right)^{2}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
-512000+702\left(3^{6}+3^{3}\right)-2\times 3^{6}\left(3^{3}-1\right)+3\left(3^{4}-1\right)^{2}
Tangohia te 27 i te 729, ka 702.
-512000+702\left(729+3^{3}\right)-2\times 3^{6}\left(3^{3}-1\right)+3\left(3^{4}-1\right)^{2}
Tātaihia te 3 mā te pū o 6, kia riro ko 729.
-512000+702\left(729+27\right)-2\times 3^{6}\left(3^{3}-1\right)+3\left(3^{4}-1\right)^{2}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
-512000+702\times 756-2\times 3^{6}\left(3^{3}-1\right)+3\left(3^{4}-1\right)^{2}
Tāpirihia te 729 ki te 27, ka 756.
-512000+530712-2\times 3^{6}\left(3^{3}-1\right)+3\left(3^{4}-1\right)^{2}
Whakareatia te 702 ki te 756, ka 530712.
18712-2\times 3^{6}\left(3^{3}-1\right)+3\left(3^{4}-1\right)^{2}
Tāpirihia te -512000 ki te 530712, ka 18712.
18712-2\times 729\left(3^{3}-1\right)+3\left(3^{4}-1\right)^{2}
Tātaihia te 3 mā te pū o 6, kia riro ko 729.
18712-1458\left(3^{3}-1\right)+3\left(3^{4}-1\right)^{2}
Whakareatia te 2 ki te 729, ka 1458.
18712-1458\left(27-1\right)+3\left(3^{4}-1\right)^{2}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
18712-1458\times 26+3\left(3^{4}-1\right)^{2}
Tangohia te 1 i te 27, ka 26.
18712-37908+3\left(3^{4}-1\right)^{2}
Whakareatia te 1458 ki te 26, ka 37908.
-19196+3\left(3^{4}-1\right)^{2}
Tangohia te 37908 i te 18712, ka -19196.
-19196+3\left(81-1\right)^{2}
Tātaihia te 3 mā te pū o 4, kia riro ko 81.
-19196+3\times 80^{2}
Tangohia te 1 i te 81, ka 80.
-19196+3\times 6400
Tātaihia te 80 mā te pū o 2, kia riro ko 6400.
-19196+19200
Whakareatia te 3 ki te 6400, ka 19200.
4
Tāpirihia te -19196 ki te 19200, ka 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}