Whakaoti mō x
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
1-5x+6x^{2}=\left(6x-1\right)x-1
Whakamahia te āhuatanga tuaritanga hei whakarea te 1-2x ki te 1-3x ka whakakotahi i ngā kupu rite.
1-5x+6x^{2}=6x^{2}-x-1
Whakamahia te āhuatanga tohatoha hei whakarea te 6x-1 ki te x.
1-5x+6x^{2}-6x^{2}=-x-1
Tangohia te 6x^{2} mai i ngā taha e rua.
1-5x=-x-1
Pahekotia te 6x^{2} me -6x^{2}, ka 0.
1-5x+x=-1
Me tāpiri te x ki ngā taha e rua.
1-4x=-1
Pahekotia te -5x me x, ka -4x.
-4x=-1-1
Tangohia te 1 mai i ngā taha e rua.
-4x=-2
Tangohia te 1 i te -1, ka -2.
x=\frac{-2}{-4}
Whakawehea ngā taha e rua ki te -4.
x=\frac{1}{2}
Whakahekea te hautanga \frac{-2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}