Aromātai
1+12i
Wāhi Tūturu
1
Tohaina
Kua tāruatia ki te papatopenga
1\left(-5\right)+1\times \left(4i\right)-2i\left(-5\right)-2\times 4i^{2}+\left(-2-2i\right)
Me whakarea ngā tau matatini 1-2i me -5+4i pēnā i te whakarea huarua.
1\left(-5\right)+1\times \left(4i\right)-2i\left(-5\right)-2\times 4\left(-1\right)+\left(-2-2i\right)
Hei tōna tikanga, ko te i^{2} ko -1.
-5+4i+10i+8+\left(-2-2i\right)
Mahia ngā whakarea i roto o 1\left(-5\right)+1\times \left(4i\right)-2i\left(-5\right)-2\times 4\left(-1\right).
-5+8+\left(4+10\right)i+\left(-2-2i\right)
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -5+4i+10i+8.
3+14i+\left(-2-2i\right)
Mahia ngā tāpiri i roto o -5+8+\left(4+10\right)i.
3-2+\left(14-2\right)i
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa.
1+12i
Mahia ngā tāpiri.
Re(1\left(-5\right)+1\times \left(4i\right)-2i\left(-5\right)-2\times 4i^{2}+\left(-2-2i\right))
Me whakarea ngā tau matatini 1-2i me -5+4i pēnā i te whakarea huarua.
Re(1\left(-5\right)+1\times \left(4i\right)-2i\left(-5\right)-2\times 4\left(-1\right)+\left(-2-2i\right))
Hei tōna tikanga, ko te i^{2} ko -1.
Re(-5+4i+10i+8+\left(-2-2i\right))
Mahia ngā whakarea i roto o 1\left(-5\right)+1\times \left(4i\right)-2i\left(-5\right)-2\times 4\left(-1\right).
Re(-5+8+\left(4+10\right)i+\left(-2-2i\right))
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -5+4i+10i+8.
Re(3+14i+\left(-2-2i\right))
Mahia ngā tāpiri i roto o -5+8+\left(4+10\right)i.
Re(3-2+\left(14-2\right)i)
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 3+14i+\left(-2-2i\right).
Re(1+12i)
Mahia ngā tāpiri i roto o 3-2+\left(14-2\right)i.
1
Ko te wāhi tūturu o 1+12i ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}