Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1-\left(2\sqrt{3}\right)^{2}+\left(2\sqrt{3}-1\right)^{2}
Whakaarohia te \left(1-2\sqrt{3}\right)\left(2\sqrt{3}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
1-2^{2}\left(\sqrt{3}\right)^{2}+\left(2\sqrt{3}-1\right)^{2}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
1-4\left(\sqrt{3}\right)^{2}+\left(2\sqrt{3}-1\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
1-4\times 3+\left(2\sqrt{3}-1\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
1-12+\left(2\sqrt{3}-1\right)^{2}
Whakareatia te 4 ki te 3, ka 12.
-11+\left(2\sqrt{3}-1\right)^{2}
Tangohia te 12 i te 1, ka -11.
-11+4\left(\sqrt{3}\right)^{2}-4\sqrt{3}+1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2\sqrt{3}-1\right)^{2}.
-11+4\times 3-4\sqrt{3}+1
Ko te pūrua o \sqrt{3} ko 3.
-11+12-4\sqrt{3}+1
Whakareatia te 4 ki te 3, ka 12.
-11+13-4\sqrt{3}
Tāpirihia te 12 ki te 1, ka 13.
2-4\sqrt{3}
Tāpirihia te -11 ki te 13, ka 2.