Aromātai
2-4\sqrt{3}\approx -4.92820323
Tohaina
Kua tāruatia ki te papatopenga
1-\left(2\sqrt{3}\right)^{2}+\left(2\sqrt{3}-1\right)^{2}
Whakaarohia te \left(1-2\sqrt{3}\right)\left(2\sqrt{3}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
1-2^{2}\left(\sqrt{3}\right)^{2}+\left(2\sqrt{3}-1\right)^{2}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
1-4\left(\sqrt{3}\right)^{2}+\left(2\sqrt{3}-1\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
1-4\times 3+\left(2\sqrt{3}-1\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
1-12+\left(2\sqrt{3}-1\right)^{2}
Whakareatia te 4 ki te 3, ka 12.
-11+\left(2\sqrt{3}-1\right)^{2}
Tangohia te 12 i te 1, ka -11.
-11+4\left(\sqrt{3}\right)^{2}-4\sqrt{3}+1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2\sqrt{3}-1\right)^{2}.
-11+4\times 3-4\sqrt{3}+1
Ko te pūrua o \sqrt{3} ko 3.
-11+12-4\sqrt{3}+1
Whakareatia te 4 ki te 3, ka 12.
-11+13-4\sqrt{3}
Tāpirihia te 12 ki te 1, ka 13.
2-4\sqrt{3}
Tāpirihia te -11 ki te 13, ka 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}