Aromātai
-\frac{29}{10}=-2.9
Tauwehe
-\frac{29}{10} = -2\frac{9}{10} = -2.9
Tohaina
Kua tāruatia ki te papatopenga
1-\frac{0\times 256\times \frac{3\times 25+15}{25}}{\frac{9}{55}}-\frac{6}{\frac{1\times 13+7}{13}}
Tātaihia te 4 mā te pū o 4, kia riro ko 256.
1-\frac{0\times \frac{3\times 25+15}{25}}{\frac{9}{55}}-\frac{6}{\frac{1\times 13+7}{13}}
Whakareatia te 0 ki te 256, ka 0.
1-\frac{0\times \frac{75+15}{25}}{\frac{9}{55}}-\frac{6}{\frac{1\times 13+7}{13}}
Whakareatia te 3 ki te 25, ka 75.
1-\frac{0\times \frac{90}{25}}{\frac{9}{55}}-\frac{6}{\frac{1\times 13+7}{13}}
Tāpirihia te 75 ki te 15, ka 90.
1-\frac{0\times \frac{18}{5}}{\frac{9}{55}}-\frac{6}{\frac{1\times 13+7}{13}}
Whakahekea te hautanga \frac{90}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
1-\frac{0}{\frac{9}{55}}-\frac{6}{\frac{1\times 13+7}{13}}
Whakareatia te 0 ki te \frac{18}{5}, ka 0.
1+0-\frac{6}{\frac{1\times 13+7}{13}}
Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
1-\frac{6}{\frac{1\times 13+7}{13}}
Tāpirihia te 1 ki te 0, ka 1.
1-\frac{6\times 13}{1\times 13+7}
Whakawehe 6 ki te \frac{1\times 13+7}{13} mā te whakarea 6 ki te tau huripoki o \frac{1\times 13+7}{13}.
1-\frac{78}{1\times 13+7}
Whakareatia te 6 ki te 13, ka 78.
1-\frac{78}{13+7}
Whakareatia te 1 ki te 13, ka 13.
1-\frac{78}{20}
Tāpirihia te 13 ki te 7, ka 20.
1-\frac{39}{10}
Whakahekea te hautanga \frac{78}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{10}{10}-\frac{39}{10}
Me tahuri te 1 ki te hautau \frac{10}{10}.
\frac{10-39}{10}
Tā te mea he rite te tauraro o \frac{10}{10} me \frac{39}{10}, me tango rāua mā te tango i ō raua taurunga.
-\frac{29}{10}
Tangohia te 39 i te 10, ka -29.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}