Aromātai
\frac{3\left(\sqrt{2}-6\right)}{2}\approx -6.878679656
Tauwehe
\frac{3 {(\sqrt{2} - 6)}}{2} = -6.878679656440358
Tohaina
Kua tāruatia ki te papatopenga
\left(1-3\sqrt{2}\right)\left(\sqrt{2}+\frac{1}{\sqrt{2}}\right)
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\left(1-3\sqrt{2}\right)\left(\sqrt{2}+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\left(1-3\sqrt{2}\right)\left(\sqrt{2}+\frac{\sqrt{2}}{2}\right)
Ko te pūrua o \sqrt{2} ko 2.
\left(1-3\sqrt{2}\right)\times \frac{3}{2}\sqrt{2}
Pahekotia te \sqrt{2} me \frac{\sqrt{2}}{2}, ka \frac{3}{2}\sqrt{2}.
\left(\frac{3}{2}-3\sqrt{2}\times \frac{3}{2}\right)\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 1-3\sqrt{2} ki te \frac{3}{2}.
\left(\frac{3}{2}+\frac{-3\times 3}{2}\sqrt{2}\right)\sqrt{2}
Tuhia te -3\times \frac{3}{2} hei hautanga kotahi.
\left(\frac{3}{2}+\frac{-9}{2}\sqrt{2}\right)\sqrt{2}
Whakareatia te -3 ki te 3, ka -9.
\left(\frac{3}{2}-\frac{9}{2}\sqrt{2}\right)\sqrt{2}
Ka taea te hautanga \frac{-9}{2} te tuhi anō ko -\frac{9}{2} mā te tango i te tohu tōraro.
\frac{3}{2}\sqrt{2}-\frac{9}{2}\sqrt{2}\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{2}-\frac{9}{2}\sqrt{2} ki te \sqrt{2}.
\frac{3}{2}\sqrt{2}-\frac{9}{2}\times 2
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{3}{2}\sqrt{2}-9
Me whakakore te 2 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}