Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(1-3\sqrt{2}\right)\left(\sqrt{2}+\frac{1}{\sqrt{2}}\right)
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\left(1-3\sqrt{2}\right)\left(\sqrt{2}+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\left(1-3\sqrt{2}\right)\left(\sqrt{2}+\frac{\sqrt{2}}{2}\right)
Ko te pūrua o \sqrt{2} ko 2.
\left(1-3\sqrt{2}\right)\times \frac{3}{2}\sqrt{2}
Pahekotia te \sqrt{2} me \frac{\sqrt{2}}{2}, ka \frac{3}{2}\sqrt{2}.
\left(\frac{3}{2}-3\sqrt{2}\times \frac{3}{2}\right)\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 1-3\sqrt{2} ki te \frac{3}{2}.
\left(\frac{3}{2}+\frac{-3\times 3}{2}\sqrt{2}\right)\sqrt{2}
Tuhia te -3\times \frac{3}{2} hei hautanga kotahi.
\left(\frac{3}{2}+\frac{-9}{2}\sqrt{2}\right)\sqrt{2}
Whakareatia te -3 ki te 3, ka -9.
\left(\frac{3}{2}-\frac{9}{2}\sqrt{2}\right)\sqrt{2}
Ka taea te hautanga \frac{-9}{2} te tuhi anō ko -\frac{9}{2} mā te tango i te tohu tōraro.
\frac{3}{2}\sqrt{2}-\frac{9}{2}\sqrt{2}\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{2}-\frac{9}{2}\sqrt{2} ki te \sqrt{2}.
\frac{3}{2}\sqrt{2}-\frac{9}{2}\times 2
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{3}{2}\sqrt{2}-9
Me whakakore te 2 me te 2.