Aromātai
\left(\lambda -2\right)\left(-\lambda ^{2}+2\lambda -2\right)
Whakaroha
4-6\lambda +4\lambda ^{2}-\lambda ^{3}
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( 1 - \lambda ) ( 1 - \lambda ) ( 2 - \lambda ) + 2 - \lambda
Tohaina
Kua tāruatia ki te papatopenga
\left(1-\lambda \right)^{2}\left(2-\lambda \right)+2-\lambda
Whakareatia te 1-\lambda ki te 1-\lambda , ka \left(1-\lambda \right)^{2}.
\left(1-2\lambda +\lambda ^{2}\right)\left(2-\lambda \right)+2-\lambda
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-\lambda \right)^{2}.
2-\lambda -4\lambda +2\lambda ^{2}+2\lambda ^{2}-\lambda ^{3}+2-\lambda
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 1-2\lambda +\lambda ^{2} ki ia tau o 2-\lambda .
2-5\lambda +2\lambda ^{2}+2\lambda ^{2}-\lambda ^{3}+2-\lambda
Pahekotia te -\lambda me -4\lambda , ka -5\lambda .
2-5\lambda +4\lambda ^{2}-\lambda ^{3}+2-\lambda
Pahekotia te 2\lambda ^{2} me 2\lambda ^{2}, ka 4\lambda ^{2}.
4-5\lambda +4\lambda ^{2}-\lambda ^{3}-\lambda
Tāpirihia te 2 ki te 2, ka 4.
4-6\lambda +4\lambda ^{2}-\lambda ^{3}
Pahekotia te -5\lambda me -\lambda , ka -6\lambda .
\left(1-\lambda \right)^{2}\left(2-\lambda \right)+2-\lambda
Whakareatia te 1-\lambda ki te 1-\lambda , ka \left(1-\lambda \right)^{2}.
\left(1-2\lambda +\lambda ^{2}\right)\left(2-\lambda \right)+2-\lambda
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-\lambda \right)^{2}.
2-\lambda -4\lambda +2\lambda ^{2}+2\lambda ^{2}-\lambda ^{3}+2-\lambda
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 1-2\lambda +\lambda ^{2} ki ia tau o 2-\lambda .
2-5\lambda +2\lambda ^{2}+2\lambda ^{2}-\lambda ^{3}+2-\lambda
Pahekotia te -\lambda me -4\lambda , ka -5\lambda .
2-5\lambda +4\lambda ^{2}-\lambda ^{3}+2-\lambda
Pahekotia te 2\lambda ^{2} me 2\lambda ^{2}, ka 4\lambda ^{2}.
4-5\lambda +4\lambda ^{2}-\lambda ^{3}-\lambda
Tāpirihia te 2 ki te 2, ka 4.
4-6\lambda +4\lambda ^{2}-\lambda ^{3}
Pahekotia te -5\lambda me -\lambda , ka -6\lambda .
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}