Aromātai
\frac{65}{2}-\frac{45}{y}
Whakaroha
\frac{65}{2}-\frac{45}{y}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1-\frac{1}{y}-\frac{5}{18}}{\frac{1}{45}}
Whakahekea te hautanga \frac{10}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{18}{18}-\frac{1}{y}-\frac{5}{18}}{\frac{1}{45}}
Me tahuri te 1 ki te hautau \frac{18}{18}.
\frac{\frac{18-5}{18}-\frac{1}{y}}{\frac{1}{45}}
Tā te mea he rite te tauraro o \frac{18}{18} me \frac{5}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{13}{18}-\frac{1}{y}}{\frac{1}{45}}
Tangohia te 5 i te 18, ka 13.
\frac{\frac{13y}{18y}-\frac{18}{18y}}{\frac{1}{45}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 18 me y ko 18y. Whakareatia \frac{13}{18} ki te \frac{y}{y}. Whakareatia \frac{1}{y} ki te \frac{18}{18}.
\frac{\frac{13y-18}{18y}}{\frac{1}{45}}
Tā te mea he rite te tauraro o \frac{13y}{18y} me \frac{18}{18y}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(13y-18\right)\times 45}{18y}
Whakawehe \frac{13y-18}{18y} ki te \frac{1}{45} mā te whakarea \frac{13y-18}{18y} ki te tau huripoki o \frac{1}{45}.
\frac{5\left(13y-18\right)}{2y}
Me whakakore tahi te 9 i te taurunga me te tauraro.
\frac{65y-90}{2y}
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 13y-18.
\frac{1-\frac{1}{y}-\frac{5}{18}}{\frac{1}{45}}
Whakahekea te hautanga \frac{10}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{18}{18}-\frac{1}{y}-\frac{5}{18}}{\frac{1}{45}}
Me tahuri te 1 ki te hautau \frac{18}{18}.
\frac{\frac{18-5}{18}-\frac{1}{y}}{\frac{1}{45}}
Tā te mea he rite te tauraro o \frac{18}{18} me \frac{5}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{13}{18}-\frac{1}{y}}{\frac{1}{45}}
Tangohia te 5 i te 18, ka 13.
\frac{\frac{13y}{18y}-\frac{18}{18y}}{\frac{1}{45}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 18 me y ko 18y. Whakareatia \frac{13}{18} ki te \frac{y}{y}. Whakareatia \frac{1}{y} ki te \frac{18}{18}.
\frac{\frac{13y-18}{18y}}{\frac{1}{45}}
Tā te mea he rite te tauraro o \frac{13y}{18y} me \frac{18}{18y}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(13y-18\right)\times 45}{18y}
Whakawehe \frac{13y-18}{18y} ki te \frac{1}{45} mā te whakarea \frac{13y-18}{18y} ki te tau huripoki o \frac{1}{45}.
\frac{5\left(13y-18\right)}{2y}
Me whakakore tahi te 9 i te taurunga me te tauraro.
\frac{65y-90}{2y}
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 13y-18.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}