Aromātai
-\frac{4}{5}+2i=-0.8+2i
Wāhi Tūturu
-\frac{4}{5} = -0.8
Pātaitai
Complex Number
5 raruraru e ōrite ana ki:
( 1 - \frac { 1 } { 3 } ) ( - \frac { 6 } { 5 } + 3 i )
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{3}{3}-\frac{1}{3}\right)\left(-\frac{6}{5}+3i\right)
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{3-1}{3}\left(-\frac{6}{5}+3i\right)
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{1}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{3}\left(-\frac{6}{5}+3i\right)
Tangohia te 1 i te 3, ka 2.
\frac{2}{3}\left(-\frac{6}{5}\right)+\frac{2}{3}\times \left(3i\right)
Whakareatia \frac{2}{3} ki te -\frac{6}{5}+3i.
-\frac{4}{5}+2i
Mahia ngā whakarea.
Re(\left(\frac{3}{3}-\frac{1}{3}\right)\left(-\frac{6}{5}+3i\right))
Me tahuri te 1 ki te hautau \frac{3}{3}.
Re(\frac{3-1}{3}\left(-\frac{6}{5}+3i\right))
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{1}{3}, me tango rāua mā te tango i ō raua taurunga.
Re(\frac{2}{3}\left(-\frac{6}{5}+3i\right))
Tangohia te 1 i te 3, ka 2.
Re(\frac{2}{3}\left(-\frac{6}{5}\right)+\frac{2}{3}\times \left(3i\right))
Whakareatia \frac{2}{3} ki te -\frac{6}{5}+3i.
Re(-\frac{4}{5}+2i)
Mahia ngā whakarea i roto o \frac{2}{3}\left(-\frac{6}{5}\right)+\frac{2}{3}\times \left(3i\right).
-\frac{4}{5}
Ko te wāhi tūturu o -\frac{4}{5}+2i ko -\frac{4}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}