Aromātai
\frac{21a^{2}+1}{2}
Whakaroha
\frac{21a^{2}+1}{2}
Tohaina
Kua tāruatia ki te papatopenga
1-a+\frac{1}{4}a^{2}+8\left(a-\frac{1}{4}\right)^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(1-\frac{1}{2}a\right)^{2}.
1-a+\frac{1}{4}a^{2}+8\left(a^{2}-\frac{1}{2}a+\frac{1}{16}\right)+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-\frac{1}{4}\right)^{2}.
1-a+\frac{1}{4}a^{2}+8a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te a^{2}-\frac{1}{2}a+\frac{1}{16}.
1-a+\frac{33}{4}a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Pahekotia te \frac{1}{4}a^{2} me 8a^{2}, ka \frac{33}{4}a^{2}.
1-5a+\frac{33}{4}a^{2}+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Pahekotia te -a me -4a, ka -5a.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Tāpirihia te 1 ki te \frac{1}{2}, ka \frac{3}{2}.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}a\right)^{2}-1+5a
Whakaarohia te \left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}\right)^{2}a^{2}-1+5a
Whakarohaina te \left(\frac{3}{2}a\right)^{2}.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\frac{9}{4}a^{2}-1+5a
Tātaihia te \frac{3}{2} mā te pū o 2, kia riro ko \frac{9}{4}.
\frac{3}{2}-5a+\frac{21}{2}a^{2}-1+5a
Pahekotia te \frac{33}{4}a^{2} me \frac{9}{4}a^{2}, ka \frac{21}{2}a^{2}.
\frac{1}{2}-5a+\frac{21}{2}a^{2}+5a
Tangohia te 1 i te \frac{3}{2}, ka \frac{1}{2}.
\frac{1}{2}+\frac{21}{2}a^{2}
Pahekotia te -5a me 5a, ka 0.
1-a+\frac{1}{4}a^{2}+8\left(a-\frac{1}{4}\right)^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(1-\frac{1}{2}a\right)^{2}.
1-a+\frac{1}{4}a^{2}+8\left(a^{2}-\frac{1}{2}a+\frac{1}{16}\right)+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-\frac{1}{4}\right)^{2}.
1-a+\frac{1}{4}a^{2}+8a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te a^{2}-\frac{1}{2}a+\frac{1}{16}.
1-a+\frac{33}{4}a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Pahekotia te \frac{1}{4}a^{2} me 8a^{2}, ka \frac{33}{4}a^{2}.
1-5a+\frac{33}{4}a^{2}+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Pahekotia te -a me -4a, ka -5a.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Tāpirihia te 1 ki te \frac{1}{2}, ka \frac{3}{2}.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}a\right)^{2}-1+5a
Whakaarohia te \left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}\right)^{2}a^{2}-1+5a
Whakarohaina te \left(\frac{3}{2}a\right)^{2}.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\frac{9}{4}a^{2}-1+5a
Tātaihia te \frac{3}{2} mā te pū o 2, kia riro ko \frac{9}{4}.
\frac{3}{2}-5a+\frac{21}{2}a^{2}-1+5a
Pahekotia te \frac{33}{4}a^{2} me \frac{9}{4}a^{2}, ka \frac{21}{2}a^{2}.
\frac{1}{2}-5a+\frac{21}{2}a^{2}+5a
Tangohia te 1 i te \frac{3}{2}, ka \frac{1}{2}.
\frac{1}{2}+\frac{21}{2}a^{2}
Pahekotia te -5a me 5a, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}