( 1 - \frac { 1 } { 2 } ) ^ { 2 } ( - 2 ) ^ { 3 } - \frac { 3 } { 2 } + - ( - \frac { 1 } { 6 } ) ^ { 2 } + \frac { \frac { 1 } { 4 } - \frac { 1 } { 5 } } { ( 1 - \frac { 2 } { 5 } ) ^ { 2 } } | - \frac { \frac { 1 } { 3 } - \frac { 2 } { 9 } } { \frac { 1 } { 8 } - \frac { 15 } { 8 } }
Aromātai
-\frac{7981}{2268}\approx -3.518959436
Tauwehe
-\frac{7981}{2268} = -3\frac{1177}{2268} = -3.5189594356261025
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Tangohia te \frac{1}{2} i te 1, ka \frac{1}{2}.
\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{1}{4}\left(-8\right)-\frac{3}{2}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Tātaihia te -2 mā te pū o 3, kia riro ko -8.
-2-\frac{3}{2}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Whakareatia te \frac{1}{4} ki te -8, ka -2.
-\frac{7}{2}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Tangohia te \frac{3}{2} i te -2, ka -\frac{7}{2}.
-\frac{7}{2}-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Tātaihia te -\frac{1}{6} mā te pū o 2, kia riro ko \frac{1}{36}.
-\frac{127}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Tangohia te \frac{1}{36} i te -\frac{7}{2}, ka -\frac{127}{36}.
-\frac{127}{36}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Tangohia te \frac{1}{5} i te \frac{1}{4}, ka \frac{1}{20}.
-\frac{127}{36}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Tangohia te \frac{2}{5} i te 1, ka \frac{3}{5}.
-\frac{127}{36}+\frac{\frac{1}{20}}{\frac{9}{25}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Tātaihia te \frac{3}{5} mā te pū o 2, kia riro ko \frac{9}{25}.
-\frac{127}{36}+\frac{1}{20}\times \frac{25}{9}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Whakawehe \frac{1}{20} ki te \frac{9}{25} mā te whakarea \frac{1}{20} ki te tau huripoki o \frac{9}{25}.
-\frac{127}{36}+\frac{5}{36}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Whakareatia te \frac{1}{20} ki te \frac{25}{9}, ka \frac{5}{36}.
-\frac{127}{36}+\frac{5}{36}|-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}|
Tangohia te \frac{2}{9} i te \frac{1}{3}, ka \frac{1}{9}.
-\frac{127}{36}+\frac{5}{36}|-\frac{\frac{1}{9}}{-\frac{7}{4}}|
Tangohia te \frac{15}{8} i te \frac{1}{8}, ka -\frac{7}{4}.
-\frac{127}{36}+\frac{5}{36}|-\frac{1}{9}\left(-\frac{4}{7}\right)|
Whakawehe \frac{1}{9} ki te -\frac{7}{4} mā te whakarea \frac{1}{9} ki te tau huripoki o -\frac{7}{4}.
-\frac{127}{36}+\frac{5}{36}|-\left(-\frac{4}{63}\right)|
Whakareatia te \frac{1}{9} ki te -\frac{4}{7}, ka -\frac{4}{63}.
-\frac{127}{36}+\frac{5}{36}|\frac{4}{63}|
Ko te tauaro o -\frac{4}{63} ko \frac{4}{63}.
-\frac{127}{36}+\frac{5}{36}\times \frac{4}{63}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o \frac{4}{63} ko \frac{4}{63}.
-\frac{127}{36}+\frac{5}{567}
Whakareatia te \frac{5}{36} ki te \frac{4}{63}, ka \frac{5}{567}.
-\frac{7981}{2268}
Tāpirihia te -\frac{127}{36} ki te \frac{5}{567}, ka -\frac{7981}{2268}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}