Aromātai
3
Tauwehe
3
Tohaina
Kua tāruatia ki te papatopenga
1\left(\sqrt{5}\right)^{2}-\sqrt{16}+\sqrt{\left(-2\right)^{2}}
Tātaihia te -\sqrt{5} mā te pū o 2, kia riro ko \left(\sqrt{5}\right)^{2}.
1\left(\sqrt{5}\right)^{2}-4+\sqrt{\left(-2\right)^{2}}
Tātaitia te pūtakerua o 16 kia tae ki 4.
1\left(\sqrt{5}\right)^{2}-4+\sqrt{4}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
1\left(\sqrt{5}\right)^{2}-4+2
Tātaitia te pūtakerua o 4 kia tae ki 2.
1\left(\sqrt{5}\right)^{2}-2
Tāpirihia te -4 ki te 2, ka -2.
1\times 5-2
Ko te pūrua o \sqrt{5} ko 5.
5-2
Whakareatia te 1 ki te 5, ka 5.
3
Tangohia te 2 i te 5, ka 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}