Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
1\sqrt{2+\left(\sqrt{7}\right)^{2}}-\sqrt{\left(\sqrt{13}\right)^{2}-\left(-3\right)^{2}}
Ko te pūrua o \sqrt{2} ko 2.
1\sqrt{2+7}-\sqrt{\left(\sqrt{13}\right)^{2}-\left(-3\right)^{2}}
Ko te pūrua o \sqrt{7} ko 7.
1\sqrt{9}-\sqrt{\left(\sqrt{13}\right)^{2}-\left(-3\right)^{2}}
Tāpirihia te 2 ki te 7, ka 9.
1\times 3-\sqrt{\left(\sqrt{13}\right)^{2}-\left(-3\right)^{2}}
Tātaitia te pūtakerua o 9 kia tae ki 3.
3-\sqrt{\left(\sqrt{13}\right)^{2}-\left(-3\right)^{2}}
Whakareatia te 1 ki te 3, ka 3.
3-\sqrt{13-\left(-3\right)^{2}}
Ko te pūrua o \sqrt{13} ko 13.
3-\sqrt{13-9}
Tātaihia te -3 mā te pū o 2, kia riro ko 9.
3-\sqrt{4}
Tangohia te 9 i te 13, ka 4.
3-2
Tātaitia te pūtakerua o 4 kia tae ki 2.
1
Tangohia te 2 i te 3, ka 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}